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I.  INTRODUCTION AND PURPOSE 

The goal of the research effort reported here has been to derive 

a class of stochastic attrition models from probabilistic assumptions 

on the behavior of individual combatants and on the interactions among 

them. Our interest is in stochastic analogs of a family of determin- 

istic attrition models commonly called "Lanchester attrition models", 

after their originator F. W. Lanchester. These deterministic models 

are discussed in Section II. 

There are several reasons for undertaking such an effort. 

Previous research on stochastic Lanchester models, as surveyed in 

Section III, has been concerned mostly with certain computational 

problems and in general imposes by hypothesis the form of the attri- 

tion process, rather than deriving that form from more elementary 

assumptions.  In some cases, therefore, our derivations lead to known 

and studied processes; the point is that instead of arbitrarily imposed 

processes we deal with the consequences of elementary and physically 

meaningful hypotheses.  In the terminology of economics we employ a 

"micro" rather than a "macro" approach, stating assumptions about 

individual combatants rather than about the overall form of the 

attrition process. 

There should be a general preference for stochastic rather than 

deterministic attrition models. A stochastic model is more general, 

more flexible, more realistic, and better founded, and always provides, 

through expectations of its outputs, scalar characterizations of the 

system being modeled.  Deterministic attrition models of Lanchester 

type are represented by differential equations and require allowing 

noninteger numbers of combatants, while the stochastic models we 

present here have only integer (but vector-valued) states. 



The reasons for wishing to derive models from elementary assumptions 

are also several. First, one wants to know if there exists a set of 

assumptions from which a known process can be derived and, if so, what 

physical situations are consistent with the assumptions. Understanding 

of the model and its possible applicability are enhanced when assump- 

tions are explicitly stated.  Different models of combat can be com- 

pared in a reasonable manner on the basis of underlying assumptions 

(as well as by their relationship to historical data) rather than on 

the untenable basis of outcomes, implications, and heuristic judgments. 

Once sets of assumptions are in hand, new models may be created 

by generalizing or weakening certain assumptions. For example, we 

have found that a certain stochastic Lanchester model frequently used 

for describing combat between heterogeneous forces is not, based on 

underlying assumptions, the appropriate generalization of the corres- 

ponding homogeneous model. The effect of weakening unrealistic and 

untenable assumptions can be explored in a sensible way only if it 

is realized what those assumptions are. 

Finally, once underlying assumptions are found for a family of 

related processes, one may seek general structural characteristics, 

unifying taxonomies, and general computational approaches such as 

we present in Section IV. 

The final section of this paper is a compendium of the processes 

derived so far, giving for each process one family of assumptions 

from which it can be derived and a probabilistic characterization of 

the process.  It may be that certain of these processes can be 

derived from alternative sets of assumptions, but we believe that 

our families of assumptions are essentially unique. 

Probabilistic technicalities and proofs of our results appear in 

the Appendix. 

The stochastic attrition processes discussed here are all time- 

dependent dynamic models with a continuous time parameter. In Karr 

(1972a, 1972b, 1973, 1974) similar derivations are given for a 

class of static and discrete time attrition models. 
2 



II. DETERMINISTIC LANCHESTER ATTRITION THEORY 

Consider a combat between two homogeneous forces, Blue and Red, 

and denote by b(t) and r(t) the numbers of Blue and Red survivors at 

time t after the combat is initiated. The British engineer F. W. 

Lanchester (1916) suggested that it is the nature of modern warfare 

that the instantaneous casualty rate on each side be proportional to 

the current strength of the opposing side.  Lanchester thus proposed 

the now famous model 

b'(t) = - c^rCt) 

(1) 
r'(t) = - c2b(t) 

where c,, c„ are positive and not necessarily equal. In order that 

(1) make sense, the functions b and r must be allowed to assume 

arbitrary nonnegative values. 

The solution of (1) subject to the initial conditions 

b(0) = bQ 

r(0) = rQ 

is given by 

b(t) = bn cosh \t  - arQ sinh \t 

(2) -i r(t) = rQ cosh \t  - a bQ sinh \t 

where 

X = (c1
c
2)' 



and 

a = (c±/c2) 

X  is a measure of the intensity of the engagement and a of the 

killing effectiveness (per unit time) of one Red combatant relative 

to that of one Blue. 

The functions b  and r defined by (2) are of interest only 

until the time T = infjt: b(t) = 0 or r(t) = 0}at which one side or 

the other is annihilated,  T is infinite if and only if 

Clr0 = C2b0 

in which case 

lim r(t) = lim b(t) = 0  ; 
t—>oo t-*00 

otherwise one side is annihilated at a finite time and the other has 

a positive surviving strength. 

It follows from (2) that 

(3) a.2[r2
0  - r(t)

2] = b2
0 -  b(t)2 

for all t .  In view of (3) the system (1) of differential equations 

is called Lanchester's "square law" of attrition. 

Lanchester also proposed the so-called "linear law" in which each 

side's casualty rate at any time is proportional to the product of its 

strength and the strength of the opposition. In differential form 

this model is given by 

b'(t) = - kxb(t)r(t) 

(4) 

r'(t) = - k2r(t)b(t) 



where k , k2 are positive constants. These are not the constants of 

(1) and, indeed, must have different units. The exact solution to 

(4) does not interest us (but note that it is nonnegative, removing 

one objection to (2)). The condition analogous to (3) is 

r - r(t) = constant x (b - b(t)) 

from which the term "linear law" originates. 

Of considerable interest is the distinction between "square 

law" and "linear law" combat. Historically [see, for example, 

Bonder (1970, p. 160), Deitchman (1962, p. 818), Dolansky (1964, 

p. 345), and Hall (1971, p. 8)] the belief has been that the square 

law describes combat situations in which individual opponents are 

identified and engaged one-by-one, a situation commonly referred 

to as "point fire" combat.  On the other hand, the linear law has 

been thought to describe combat processes in which weapons (such as 

artillery) fire only at an area in which opponents are located 

("area fire"). The research presented here leads to a number of 

relevant conclusions, whose overall effect in the preceding 

distinction is somewhat ambiguous. Indeed, perhaps the best 

distinction is the following.  "Square law" and "linear law" are 

terms which distinguish two types of engagement initiation. In 

the former one side initiates engagements (i.e., fires shots) at 

a mean rate which is proportional to its own numerical strength 

and independent of the numerical strength of the opposition, while 

in the latter each side initiates engagements at a mean rate pro- 

portional to the product of its numerical strength and that of the 

opposition. On the other hand the "area fire" - "point fire" 

distinction seems to involve mostly what can happen once a shot 

is fired. Area fire processes allow multiple kills with one shot 

while point fire processes allow at most one kill by a single shot. 

This dichotomy is not unambiguous; for example certain processes 

which seem physically to represent the "firing at an occupied area" 

aspect usually associated with area fire may in fact have at most 

one kill per shot, due to dispersion of one side or the other. 

5 



Seen in this way the square law-linear law and point fire-area 

fire are not competing distinctions but, rather, are complementary, 

so that in fact four classes of processes are defined by this classi- 

fication scheme. 

Let us now consider the case of heterogeneous forces, where 

each side consists of two or more distinct types of combatants. 

Suppose there are M types of Blue weapons (combatants) and N 

types of Red weapons and denote by b.(t) and r.(t) the number of 

Blue type i and Red type j weapons, respectively surviving at 

time t .  Let b(t) = (b^t), ..., bM(t)) and r(t) = (r^t), ..., 

r (t)) be the vectors of Blue and Red surviving forces at time t, 

respectively. 

Since there is no known set of precise and unambigous assumptions 

leading by means of a rigorous mathematical derivation to (1) (Weiss 

(1957) is typical of the ambiguity and vagueness of previous sets 

of assumptions and the lack of rigor of previous derivations) it is 

not clear what should be the appropriate generalization to the 

heterogeneous case.  The usual heterogeneous version of (1) is 

obtained purely formally, by replacing b, r, c1 and c2 there by the 

vector b, the vector r and matrices c and c^  to obtain the model 

N 

(5) 

bf(t) = - E c (i, j)r (t)  ,   i = 1, ..., M 
j=l        3 

M 
r'(t) = - E c2(j, i)b.(t)  ,   j = 1, ..., N 
J      1=1 

which is often abbreviated in matrix form as 

b' = - c r 

c2b , 

where c = [c (i, j)] and c = [c (j, i)] are M x N and N x M non- 

negative matrices, respectively. 



Evidently there exist neither a closed-form solution to (5) nor 

any means of handling negative components. The termination rule so 

easily described for the homogeneous square law model (1) does not 

carry over. Another of our discoveries is that the stochastic attri- 

tion process whose analog is (5) is not, based on sets of assumptions, 

the appropriate generalization to the heterogeneous case of the sto- 

chastic process analogous to (1). Hence the common practice of 

calling (5) "heterogeneous Lanchester-square combat" is unjustified. 

As part of our research we have derived the proper stochastic and 

deterministic heterogeneous square law models, which are presented 

in Section V. 

Relatively little has been said about heterogeneous versions of the 

linear law model (4) although it has been suggested by D. Howes (per- 

sonal communication to L. B. Anderson) that the appropriate form is 

N 
bT(t) =-bi(t) S k (i, j)r.(t) 

1=1       J 

(6) 

r:(t) =-r (t) £ k2(j, i)b.(t) 
M 

where k , k_ are nonnegative M x N and N x M matrices, respectively. 

What the motivation for (6) is, other than (4) and intuition, is 

not clear, but it does turn out that the stochastic version of ( 6) 

is the proper generalization, based on assumptions, of the stochastic 

version of (4). 

The symmetry of (1) and (4) is not necessary.  One might assume 

instead that 

b'(t) = - cr(t) 

(7) 

r'(t) = - kb(t)r(t) , 



for positive constants k and c , which is the so-called "mixed- 

law,f of Lanchester combat. The mixed law was proposed by Deitchman 

(1962) as a model of guerrilla ambushes, with Blue representing the 

ambushers and Red the ambushed. 



III.  SOME ASPECTS OF PREVIOUS WORK ON 
STOCHASTIC LANCHESTER PROCESSES 

We do not intend here to survey in detail the large collection of 

previous studies of stochastic models purported to be the proper analogs 

of the deterministic systems (1), (4), (5), (6) and (7), except by 

indicating the philosophical and mathematical differences between those 

approaches and our approach here. The two most extensive published 

surveys are Dolansky" (1964) and Hall (1971); Springhall (1968) also 

contains a survey and a rather extensive bibliography. Included in 

the list of references are a number of papers of interest in the 

historical development of Lanchester theories of combat; in particu- 

lar, the papers of Brown (1955), Isbell and Marlow (1956) and Weiss 

(19 57) contain the germs of the theory.  Sets of assumptions in these 

early works are imprecise and ambiguous and derivations are, for the 

most part, incomplete or nonexistent. One purpose of this research 

is to provide consistent and unambiguous sets of assumptions from 

which certain stochastic attrition models can be rigorously derived. 

In doing so we have unified and extended the theory of Lanchester 

combat models. 

In order to understand the attrition processes presented in 

Section V, some background concerning a certain class of Markov 

processes, namely regular step processes, is required; we shall also 

make use of the following discussion in the remainder of this section. 

Blumenthal and Getoor (1968), Freedman (1971), and Karlin (1968) are 

principal references. 

Let E be a countable set. A Markov matrix on E is a mapping 

P: E x E - [0, 1] with the property that 



Z    P(i, j) = 1 
jeE 

for all i e E. 

Given a Markov matrix P on E such that P(i, i) = 0 for all i 

and a function X : E - [0, ») there exists a Markov process (Xt). n 

with state space E satisfying the following intuitive description. 

If X(i) = 0, then once the process enters state i it remains there 

forever after, while if X(i) > 0 the process, upon entering state i , 

remains there an exponentially distributed time with mean 1/X(i) 

independent of the past history of the process, whereupon it jumps 

to another state in E according to the probability distribution 

P(i, '),   independent of the length of its sojourn in state i.  (Xx.) 

is called the regular step process with jump function X and 

transition kernel P . 

The family (P.). n of Markov matrices on E defined by 

Pt(i, j) = p|xt = j|XQ = if 

is called the transition function of (X. ) The matrix-valued mapping 

P can be shown to be differentiable and the matrix- 

Q = p; 

has the property that P' = QP for all t . Q is called the 

infinitesimal generator of the regular step process (X. ) and is 

given by 

(8) Q(i, j) = 

- X(i) if j = i 

X(i)P(i, j)   if j i  i . 

Q has the interpretation of specifying the "infinitesimal" or 

"differential" behavior of the process (Xt) because for j ^ i, 

10 



Q(i, j) is the "infinitesimal rate" at which the process (X ) 

moves from state i to state j in the sense that 

P{Xt+h = j|Xt = i] =  Q(i, j) h + o(h) 

as h - 0.  Here lim o(h)/h = 0. The resemblance to a system of 
hiO 

differential equations is evident, so a given stochastic attrition 

process is called an analog or version of one of the deterministic 

models (1), (4), (5), (6), or (7) provided its infinitesimal 

generator sufficiently resembles the appropriate system of differ- 

ential equations.  Further details are in the Appendix. 

For example, the second stochastic attrition process presented 

in Section IV has infinitesimal generator Q given by 

Q((i, j); (i, j - D) = icx 

(9) Q((i, j); (i, j)) = - (icx + jc2) 

Q((i, J); (i - 1, J)) = 3C2 

where c,, c? are positive constants derived from quantities given in 

the appropriate family of assumptions.  The first equation in ( 9 ) 

says, in the differential interpretation of Q, that when Blue and 

Red strengths are i and j , respectively, Red casualties (that 

is the transition from j Red survivors to j - 1 Red survivors) are 

occurring at infinitesimal rate ic, . Hence there is justification 

for calling the process whose infinitesimal generator is the Q, of 

(9), a stochastic homogeneous square law attrition process, because 

of the clear resemblance between (1) and (9). This justification, 

incidentally, is far from new, dating at least to Snow (1948). 

All previous work on stochastic Lanchester-type processes begins 

essentially at (9) by imposing as a hypothesis the form of the 

generator of the process to be studied. Such studies have generally 

been concerned with computing quantities of interest such as 

11 



(1) expected numbers of survivors at each fixed time; 

(2) distribution and expectation of the time required 

to reach certain subsets of the state space (such 

as the set{(i, j):  i = 0 or j = Of of absorbing states 

which is entered when one side or the other is anni- 

hilated); 

(3) the probability that Blue wins the engagement by 

exterminating Red. 

Our concern has been directed at a more fundamental problem.  It 

is elementary to show, for example, that there exists a regular step 

process whose infinitesimal generator is the Q, given in (9), but 

no one has previously presented a complete and unambiguous set of 

assumptions on the firing behavior and interaction (or lack thereof) 

among combatants which entail an attrition process whose infinitesimal 

generator is the Q of (9). It is this lack of basic and physically 

meaningful sets of underlying assumptions that this research attempts 

to alleviate. 

Hence in some cases the processes we derive are known, but not 

always.  In all cases, it is the derivation and the more primitive 

level of the underlying assumptions which are new.  Sometimes one 

set of assumptions leads the way to a new process (in particular 

this is the case for the stochastic versions of the heterogeneous 

square law (5)) and these new processes are also discussed in 

Section V. 

12 



IV. STRUCTURE OF THE FAMILY OF PROCESSES DERIVED 

We discuss in this section several unifying structures and taxon- 

omies which can be applied to the family of stochastic attrition 

processes presented in the next section, from which the reader hope- 

fully can obtain both overview and insight. 

The first taxonomy classifies the stochastic attrition processes 

presented here in terms of three criteria: 

(1) Multiple kill (area fire) or single kill (mainly point fire) 

(2) Square law engagement initiation or linear law engagement 

initiation 

(3) Homogeneous or heterogeneous force compositions 

This appears in Table 1 below. The classification as to type of en- 

gagement initiation is based on analogy between infinitesimal genera- 

tors of the process and the various systems of differential equations 

appearing in Section I. 

In each instance the homogeneous model is a special case of the 

heterogeneous model and each heterogeneous process correctly reduces 

to the corresponding homogeneous process when each side consists of 

only one type of combatant. 

The second taxonomy is based on the families of assumptions under- 

lying the processes, which are presented in Section V. The taxonomy 

appears in Table 2, which gives for each of the processes the form of 

the basic assumptions from which it is derived (except assumption (3) 

which holds for all of the processes). A typical family consists of 

(1) An assumption that either 

(a) Times between shots fired by a surviving weapon are 

independent and identically exponentially distributed 

with some mean, that when a shot is to occur exactly 

one opponent is detected, attacked, killed or not, and 

lost from contact, all instantaneously; or 

13 



Table 1. TAXONOMY OF THE PROCESSES 

Force Composition 

Engagement 
Initiation 

Homogeneous Heterogeneous 

I. Multiple kill (area fire) 

Square law 1) Process Al, a new process 
with multiple kills and 
square law engagement 
initiation 

II.  Single kill (mainly point fire) 

Square law 1) Process SI, whose genera- 
tor is analogous to (1) 

1) Process S2, whose genera- 
tor is analogous to (5) 

2) Process S3a, a new process 
obtained by simple exten- 
sion of the assumptions of 
Process SI 

3) Process S3, a new family 
of processes incorpora- 
ting fire allocation, of 
which S3a is a special 
case 

Linear law 1) Process LI, whose genera- 
tor is analogous to (4) 

2) Process L2, a new process 
generalizing Process LI by 
the inclusion of engage- 
ments of positive duration 

1) Process L3, a new process 
obtained by extension of 
the assumptions of Process 
LI to the heterogeneous 
case, with generator 
analogous to (6) 

Mixed law 1) Process Mia, a special 
case of Ml, with generator 
analogous to (7) 

1) Process Ml, a new process 
of which a process with 
generator analogous to 
(7) is a special case. 

14 



T^IT- 

Table 2. ASSUMPTIONS OF THE PROCESSES 

Process 

Al Homogeneous 
Square 

SI Homogeneous 
Square 

S2 Heterogeneous 
Square 

Assumptions 

la) Mean firing rate is specified. 

2) Shot kills binomially distributed number of 
opponents. 

la) Mean firing rate is specified. 
2) Shot kills exactly one opponent with probability 

p, none with probability 1 - p. 

la) One firing process for each opposing weapon type 
with rate dependent on target and shooter; 
all such processes occur simultaneously and 
independently. 

2) Kill probabilities depend on target and attacker. 

S3 Heterogeneous 
Square 

la) Each shooting weapon fires shots at mean rate 
dependent only on its type. Allocation of fire 
over opposing weapon types is by prescribed 
probability distributions. 

2) Kill probabilities depend on target and attacker. 

S3a Heterogeneous 
Square 

la) Same as S3 except that fire allocation is by 
uniform distributions (special case). 

LI Homogeneous 
Linear lb) Mean time to make one-on-one detection specified, 

2) Kill probability specified. 

L2 Homogeneous 
Linear 

lb) As in LI. 
2) Engagement is one-on-one, lasts for exponential- 

ly distributed duration, ends with death of one, 
the other, or neither combatant with specified 
probabilities. 

L3 Heterogeneous 
Linear 

lb) Mean detection time depends on target and 
searcher. 

2) Kill probability depends on attacker and target. 

Ml Heterogeneous 
Mixed 

Mia Homogeneous 
Mixed 

1) Each side possesses two weapon types, one of which 
behaves according to la) and the other according 
to lb). 

2) Kill probability depends on target and attacker. 

1) One side has weapons described by 12); the single 
weapon type on the other side is described by lb), 

2) Kill probability specified. 

15 



(b) The time required to detect a particular opponent is 

exponentially distributed with some mean, different 

opponents are detected independently, and every 

opponent detected is instantaneously attacked, killed 

or not, and lost from contact; 

(2) Specification of necessary conditional probabilities of 

kill given detection and attack; 

(3) An assumption that firing processes of all combatants are 

mutually independent. Thus each weapon operates independently 

of all weapons on the other side and all other weapons on its 

own side. 

In heterogeneous, mixed, area fire (Al) and time-to-kill (1,2) 

models, these assumptions are weakened or modified. The heterogene- 

ous Process S3 requires additional assumptions concerning allocation 

of fire. In heterogeneous processes, mean rates of fire or detec- 

tion and kill probabilities depend in general on both target and 

shooting weapon types. 

The universal independence assumption (3), even though it is 

omitted from Table 2, should not be overlooked.  It states that 

in a probabilistic sense there is no interaction among weapons on 

a given side and interaction among weapons on opposing sides only 

when a kill occurs. In particular, none of these models is 

capable of handling synergistic effects sometimes thought to be 

important, except perhaps by artificial (and possibly unjustifiable) 

devices such as modifying the initial numbers of weapons of some 

types, based on the absence or presence of some other weapon type 

before applying one of the attrition models presented here. 

We have attempted to keep our assumptions as free from 

restrictive physical interpretation as possible, in order to 

demonstrate the full range of applicability of each model. For 

16 



example consider the assumption (1) of Process SI (see Section V) 

which states that times between shots fired by a surviving weapon 

are independent and identically exponentially distributed. This 

assumption is compatible with a number of different physical reali- 

zations of combat. One can envision combatants as stationary and 

firing at rates dependent only on their own nature (this seems to 

be an "area fire" kind of assumption) or as pressing forward in 

such a way as to maintain a constant mean rate of engagements with 

the opposition. The point is that our assumptions are not unique 

in terms of physical situations in which they might be felt to be 

satisfied and we have endeavored to state them in terms which make 

it easy to verify their plausibility. 

The widely held and already mentioned belief in the correspondence 

Square Law-**-Point Fire 

Linear Law«*-*-Area Fire 

is misconceived. Rather, as we have mentioned earlier, there exists 

the following two way classification of processes 

Engagement Initiation 

Square Law Linear Law 

Multiple 
Kill Structure 

Single 

which appears to us to make good sense. 
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We may look also at the common properties of the family of 

stochastic attrition processes we have derived.  Among these 

properties are the following: 

1) All are regular step processes (in particular, all are 

Markovian); 

2) Infinitesimal generators resemble the Lanchester differential 

models of combat; 

3) All components of sample paths are nonincreasing (we have not 

included provision for reinforcements); 

4) All states are either transient or absorbing (the latter 

represent extermination of one side or the other). 

Quantities of interest one seeks to compute for use in 

modeling attrition would include 

1) Expected numbers of survivors (and thus expected attrition) 

at various fixed times after the combat begins; 

2) The distribution and expectation of first entry times of 

various subsets of the state space (which might represent, 

for example, breakoff points or extermination of one side); 

3) The expected numbers of survivors at random times such as 

those in 2) above; 

4) Variances of certain quantities, for use in estimating errors 

made in computational implementations; 

5) In heterogeneous models, expected attrition caused by each 

type of opposition weapon. 

An advantage of having a family of attrition processes with some 

common characteristics is the possibility of developing general com- 

putational methods. We will now briefly discuss one which might be 

used to compute expected attrition.  For concreteness, consider a 
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homogeneous process ((B , R._)V n where B and R are the numbers 

of Blue and Red survivors at time t, respectively, With initial 

conditions of i Blues and j Reds the expected number of Blue 

survivors at time t is given by 

i  j 
(10) E[B|(B,R) = (i,j)] = E  E kP ((i,j); (k,i)) 

z      u u k=0 1=0      r 

where, as will be recalled, 

Pt((i,j); (k,£)) = P|(Bt,Rt) = (k,i)|(B0,R0) = (i,j)( . 

But by known properties of infinitesimal generators we have 

Pr«±,  j); (k, £)) = E aQn((i, j); (k, A)) 
r n=0 n* 

where Q is the n  power of the infinitesimal generator matrix Q 

of the process. Therefore (interchange of the order of summation is 

justified by boundedness of all quantities) we can write 

ErB.I(Bn,Rn) = (i,j)] = E £r E  E kQn((i, j); (k, l))   . 
r'  U U n=0 n* k=0 1=0 

00 

In particular, the infinite sum E is the limit as M - » of the 
"n=0 

M 
finite sums E 

n=0 

Thus for each M we have the approximation 

M tn *  j   n 
(11) E[B |(B0,R0) = (i,j)] ~ E £r E  E k.Q ((i,j); (k,£))  . 

u u n=0 n* k=0 j>=0 
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When M = 1 this becomes, provided instantaneous multiple kills are 

precluded, 

(12)    E[Bt|(B0,R0) = (i,j)] ~ i - tQ((i, j); (i - 1, j)) 

which is essentially the analogous (deterministic) differential 

equation. This, incidentally, provides a justification (albeit 

tenuous) of using the deterministic differential models as approxi- 

mations to the true expectations obtained from stochastic models. 

But why choose M = 1 in (11), once the whole family of approxi- 

mations (11) is available and justified and when it can even be shown 

that each is a better approximation than the preceding one? The matrix 

Q consists mostly of zeroes rindeed, Q((i, j); (k, I))  is, in general, 

zero unless (k, l)  is (i - 1, j), (i, j - 1), or (i, j)] so that it 

would be feasible to take M = 3 or 4 or 5 in (11) to produce more 

accurate approximations to the true expectations. Moreover, this 

scheme of approximation is valid for all the processes we have 

derived.  The principal difficulty would be computation of powers of 

Q. but since Q. consists mostly of zeroes it might well be feasible 

to wdiagonalizeM Q ; that is, to find a representation of the form 

Q = A_1DA 

where D is a diagonal matrix, in which case 

^n   -l_n,. 
Q = A D A 

becomes trivial to compute and approximations in (11) with M 

essentially arbitrary would become feasible. Indeed in this case, 

we can obtain P. explicitly as 

Pt = A"
1 eCD a. 

Further research is desirable on such matters. 
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V. A COMPENDIUM OF STOCHASTIC LANCHESTER ATTRITION PROCESSES 

We present here the family of attrition process as derived in 

this research effort. The format is to give for each process the 

set of assumptions from which we have derived it, and a description 

of its properties as a regular step process, namely, its jump function, 

transition kernel, and infinitesimal generator, followed by inter- 

pretive remarks. We also give specific versions of expression (12) 

for each process. 

We first present some remarks on the general structure of the 

families of assumptions leading to the processes described in this 

section.  Each family includes assumptions concerning the following: 

1) Structure of the two opposing forces; 

2) The rate at which engagements are initiated; 

3) The evolution and possible outcomes of an engagement (in all 

processes but L2 an engagement occurs instanteously and can 

end only in death of some weapons on the engaged side and 

loss of contact); 

4) If necessary, allocation of fire; 

5) Interaction among weapons on a given side; 

6) Interaction of a weapon on one side with weapons on the 

opposing side, other than engagement. 

In all models, 5) and 6) are independence assumptions stipulating 

no interaction. 

As general notations we establish Bt for Blue survivors at time t 

and R for Red survivors at time t. These will sometimes be vectors. 

For each process we give the values of jump function, transition 

kernel, and infinitesimal generator only for nonabsorbing states. 
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The set of absorbing states is left to the reader to determine (it is 

the family of states in which one side or the other is exterminated). 

If x is absorbing X(x) = 0, Q(x, y) = 0 for all y and P(x, .) is 

not defined. 
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Al Homogeneous Square Law Area Fire Process 

Assumptions 

1. All weapons on each side are identical. 

2. Times between shots fired by a surviving Blue weapon are 

independent and identically exponentially distributed with mean 1/r,. 

3. If a shot is fired by a Blue weapon when there are k Reds 

surviving the shot has the instantaneous effect of killing a number 

of Red weapons which is binomially distributed with parameters 

(k, px). 

This means that the shot has probability p. of killing each 

particular Red weapon and that different Red weapons are killed 

independently of one another. 

4. Red weapons satisfy assumptions 2 and 3 with mean time between 

shots l/r2 and individual target kill probability p?. 

5. Firing processes of all weapons are mutually independent. 

Process Characterization 

Under the preceding set of assumptions the stochastic survivor 

process ((B. , R1.))1_^0 is a regular step process with jump function 

\  given by 

\(i, j) = ir^l - (1 - Pl)
j) + jr2(l - (1 - pj)1)  , 

transition kernel P given by 

iri(i)ci - pi)A pi_A 

P(fi,j); (i,x)) =  ww-,- A\  >  i = °> •••> J 

.(i,3); (k,j)) = N x(i> j)  > 
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and infinitesimal generator Q given by 

Q((i, j); (i, JD) = i^fJKl - v^'vi'1: 1=0>   ..., j-1 

Q((i, j); (i, j)) = -Cir^l - (1 - Pl)
J) + jr2(l - (1 - p^1)] 

Q((i, 3); (k, j)) = Jr2fjVl - P2)
k p^_k,  k=0, ...., i-1 • 

The binomial distribution of assumption 2 can be replaced by any 

probability distribution on 0,...,k , so this process is in fact a 

whole class of similar processes.  In particular, the distribution 

which places mass p, on 1 and mass 1 - p, on 0, yields the Process 

SI described below. 

This process is in many ways the most interesting of those we 

have derived, because of the number of intriguing questions it 

raises. The interpretation of its assumptions, especially that 

concern binomially distributed multiple kills, seems to be unequi- 

vocally that of area fire.  (Indeed, the possibility of multiple 

kills may well be the distinguishing feature of area fire combat 

processes).  What is at issue is whether this is a square law 

process or a linear law process.  Consider its infinitesimal 

generator Q. Examining the term - Q((i,j),(i,j)), which is the 

rate at which the process leaves state (i,j), we have what appears 

to be of square law form (cf. the corresponding term for process 

SI).  But on the other hand 

Q((i,j), (i,j - 1)) = irxj(l - P!)3"1?! , 

which can be thought of as a representation of the instantaneous 

rate at which Red combatants are being destroyed when the current 

state of the process is (i,j), can be argued to be of linear law 

form (but not entirely, because of the presence of the factor 

(1 - Pl)
j_1).. 

One way to clarify the situation is to abandon the square law- 

linear law dichotomy for attrition entirely and to simply regard 

the processes we have derived, in terms of their underlying 
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assumptions.  What distinguishes Process Al from all the other 

processes is the provision for multiple kills, so it might even 

be argued that this is the only true "area fire" process presented 

here. The whole situation is complicated by the fact that if the 

binomial distribution of assumption (2) is replaced by the distribu- 

tion with mass p on 1 and mass 1 - p on 0 the Process SI, which seems 

clearly to be a square law process, is obtained. 
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SI    Homogeneous Square Law Process 

Assumptions 

1. All weapons on each side are identical. 

2. Times between shots fired by a surviving Blue weapon are 

independent and identically exponentially distributed with mean 1/r... 

3. When a shot occurs it kills exactly one Red weapon with 

probability p and no Red weapons with probability 1 - p , instan- 

taneously and independent of past history of the process. 

4. Red weapons satisfy assumptions 2 and 3 with mean time between 

shots of l/r„ and kill probability p . 

5. The firing processes of all weapons are mutually independent. 

Process Characterization 

For i = 1, 2,16t c. = r.p.. Then subject to Assumptions 1 to 5 

above, ((B , R1_))+_^n is a regular step process with state space 

t) xN, jump function \    given by 

X(i, j) = ic1 + jc2 , 

transition kernel P given by 

icl 
PC(i, J); (i, J - D) = ic, + jc, 

P((i, j); (i - 1, j)) = 
JC2 

IC^ + ]C2 ' 

and infinitesimal generator Q given by 

Q((i, 3), (i, j - D) = ic1 

Q((i, J), (i, J)) = - (icx + Jc2) 

Q((i, j), (i - 1, j)) = jc2 . 
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For this process the approximation (12) is given by 

E[Bt|(B0, R0) = (i, j)] ~ i - jc2t ; 

similarly 

E[Rt|(BQ, R0) = (i, j)] ~ j - iCjLt . 

Clearly the larger t is, the worse the approximation. 

By the form of Q this process is the stochastic version of the 

deterministic square law (1).  1/c-,  is the mean time between fatal 

shots fired by a Blue weapon, so c, = r,p, can be interpreted as the 

mean rate at which a Blue weapon kills Red weapons (which is inde- 

pendent of the strength of the Red force so long as the latter remains 

nonzero), giving in physical terms what the coefficients c, and c? in 

(1) mean. 
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S2  Heterogeneous Square Law Process 

Assumptions 

1. There are M Blue weapon types and N Red weapon types. 

2. Consider a Blue type i weapon. The times between shots it 

fires at Red type j weapons are independent and identically ex- 

ponentially distributed with mean l/r,(j, i). 

3. These  N firing processes occur simultaneously and 

independently. 

4. A shot fired by a Blue type i weapon at Red type j weapons is 

directed at one Red type j weapon which is chosen according to a 

uniform distribution and is fatal with probability p,(j, i). 

5. Red weapons also satisfy 2-4, with parameters r_(i, j), 

p9(i, j) describing the fire of a Red type j weapon against Blue 

type i weapons. 

6. Firing processes of all weapons are mutually independent. 

Process Characterization 

For q = 1, 2 and appropriate k and l  , let c_(k, l)  = 

r (k, £)p (k, i).    Note that B and 1L   are  now vectors of dimension 

M and  N , respectively. Then subject to assumptions 1 through 

6 above, the vector-valued process ((Bt, f^))^ 
is a re9ular steP 

process with state space N x ... x N (M + N times) and, for states 

(x; y) = (xr ..., xM; yp ..., yN), jump function .X given by 

X(x; y) =   Z    %        (c?(i, j)y. + c,(j, i)x.) , 
i:x±>0 j:y.>0  '     J 

transition kernel P given for j with y > 0 by 

M 
E c (j,i)x. 

i=l 
P((x, y); (x; y±,   ..., y^ -1,..., yN>) = x^x> y^  , 
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and for i with x. > 0 by 

N 
E c2(i,j)y. 

P((x,y); (x1,...,xi-l,...,xM; y)) = 3" x(x>y)  

and infinitesimal generator Q given by 

M 
Q((x,y); (x; y^...,^-!, ...,y„)) = _E c1(j,i)xi  if y > 

Q((x,y); (x,y))= -   E   E   (c (i,j)y 
i:x.>0 i:y.>0        J 

+ c1(j,i)xi) 

N 
Q((x,y);(x1,... xi - l,...,xM; y))= E c2(i,j)y   if x. > 0. 

' j=l      J 

State (x,y) is absorbing if and only if x - 0 or y - 0. 

Corresponding to the approximation (12) we have for this process 

EC5t'^0, R0) =(x,y)] ~ x. - ( £ c2(i, j)y.)t 

for i = 1, ..., M while for j = 1, ..., N 

M 
E[R^|(B0, R0) = (x, y)] ~ yj - (  E Cl(j, i)Xi)t . 

It seems rather natural to call this process "heterogeneous 

Lanchester square" because of resemblance of Q to the system (5) 

of differential equations, and this process provides a physical 

interpretation of the matrices in (5).  But the physical interpreta- 

tion of the assumptions is quite unappealing.  In particular, assump- 

tions 2 and 3 are unpalatable. They state that each weapon carries 

out one firing process for each type of opposition weapon and that 
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all these processes are evolving concurrently and independently. 

On the contrary, the spirit of assumption 2 of processes Al and 

SI is that a weapon's firing behavior is a function only of its 

type and of whether there are a positive number of targets present. 

The next process we present is in that spirit. 

It is, in any case, the present process S2 which is commonly 

referred to as "stochastic heterogeneous Lanchester square*. Based 

on the structure of the underlying families of assumptions, this 

designation seems to be inappropriate. 
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S3a  Heterogeneous Square Law Process 

Assumptions 

1. There are M Blue weapon types and N Red weapon types. 

2. Times between shots fired by a surviving Blue type i weapon 

are independent and identically exponentially distributed with mean 

1/r^i). 

3. When a Blue type i weapon fires a shot it is directed at a Red 

weapon chosen from all Red weapons currently surviving according to a 

uniform distribution. 

4. A shot fired by a Blue type i weapon at a Red type j weapon 

is fatal with probability pn(j,i). 

5. Assumptions 2-4 hold for Red with mean firing rates r?(j) 

and kill probabilities p2(i,j). 

6. The firing processes of all weapons initially present are 

mutually independent. 

Process Characterization 

Under the preceding family of assumptions, the survivor process 

((B , St))t>o 
is a re9ular steP process with state space £J x ... xjj 

(M + N time's), jump function \ given by 

M  N    x. y. 
X(x,y) = E  E [  t

1
1 P2(i,j)r2(j)y. +  ^±  p1( j ,i)r1(i)xi] 

i=l j=l J  y 

M N 
where x • 1 = E x, , y • 1 = E y, transition kernel P given by 

M 
v   E p (j,i)r (i)x 
yj i=i x   _____ 

1» •,,'yj  x' *••' yM" :: y • 1     \(x,y) 

N 
v   E P2(i,j)r2(j)y. 
i 3=1 3 

3 i  i=l P( (x,y); (x; y,,...,y. - 1, ..., y )) =- 

P((x,y); (x1,...,xi - 1,...,^; y)) = x ^ 
X(x,y) 
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and infinitesimal generator Q given by 

yi M 
Q((x,y); (x; yx,...,yj-l,...,yM)) = J±  _E p1(j,i)r1(i)xi 

M  N   x. 
Q((x,y); (X,y)) = - E  E [—K  p2(i, j )r (j )y 

i=l 1=1 x L    * z        3 
3: 

yi 
+ 7TTpl(j'i)rl(i)xi] 

x.   N 
Q((x,y); (xl, ...,xi-l,...,xM; y)) = 7-^3 T,   P2(i, j )r2(j )yj  . 

For this process the first-order approximation (12) is given by 

x.  N 
EC?t,(?0> ^ = (x' y)] ~ xi ~ Cx^I E P2(i'^r2(^yi)t 

j=l J 

provided x. > 0, while if y. > 0 

y.  M 
E[R^|(B0, R0) = (x, y)] ~ y - (—1 E p^ j ,i)r (Dx^t; 

here i = 1, ..., M and j = 1, ..., N. 

The reader may well protest that Q is of linear-law rather than 

square-law form, but this really isn't so; the factors (x.)/(x • 1) 

and (y.)/(y • 1) are simply normalizing constants.  In view of assump- 

tion 3, (y-)/(y * 1) is the probability that a Blue weapon, if it fires 

at a Red target force y , will direct the shot at a Red type j weapon. 

Implicit (but not really necessary) in the statement of assumption 3 

of the Homogeneous Square Law Process SI is the notion that the one Red 

weapon attacked each time a shot is fired is uniformly chosen from among 

all Red weapons then present.  Therefore the assumptions of Process S3a, 

and not those of the commonly studied and applied Process S2, are the 
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proper generalization of the assumptions of Process SI to the 

heterogeneous case. This generalization preserves dependence of mean 

firing rate on only the type of the shooting weapon and the uniform 

fire allocation. Hence, we believe, it is more appropriate to call 

process S3a a stochastic model of heterogeneous Lanchester-square 

attrition that it is to so call Process S2. 

The system of differential equations analogous to this process is 

given by 

- r.  M 
r' =nrJ- E kl(j, i)b. 

1=1    l 

- b.  N 
b^=-TrJ- Z^Ci, j)r. 

S b. : 

k=l K 

where 

k-^j, i) = Px(j, i)rx(i) 

and 

k2(i, j) = PjC
1» J)r2(j)  • 

In particular this provides an interpretation of the matrices k , kj, 
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S3  Heterogeneous Square Law Process 

Assumptions 

The assumptions here are those of the Process S3a but with 

assumption 3 there modified as follows. 

3. If a Blue type i weapon fires a shot at a time when the Red 

force is (the N-vector) y then the probability that the one target 

attacked is of type j is ^(yj), j = 1, ..., N; within the class of 

type j targets the specific target attacked is chosen uniformly. For 

each i and y , ^(y, • ) is a probability distribution over the 

set | 1, ..., N} of Red weapon type indices. 

Similarly, assumption 5 is changed to include fire allocation 

distributions n..(x, • ) for Red type j weapons firing at a Blue force 

of composition x . 

Process Characterization 

Under the family of assumptions given above, ((B , R )) _ is a 

regular step process with jump function X    given by 

M  N 
X(x,y) = E  S U (y,j)p (j,i)r (i)x. 

1=1 j=l  x     1 x   1 

+ ri:).(x,i)p2(i,j)r2(j)y:j}, 

transition kernel P given by 

M 
E *i(y,j)P1(j,i)r1(i)x:L 

P((x,y); (x; y±,   ..., y^ - 1, ..., yN)) = ~ \(x,y)  

£ T):j(x,i)p2(i,j)r2(j)yj 

c, y); x15 ..., x. - i,..., XJJ; y)) =2=1 r(7-y5 , P((x, 

and infinitesimal generator Q given by 
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M 
Q((x,y); (x; y15...,y. - l,...,yN)) = E *.(y,j)P1(j,i)r1(i)xi 

J i=l 

M  N 
Q((x,y); (x,y)) = - E  E | * .(y, j )p (j ,i)r (i)x + r\Ax,i)p (±,j)v (j)yA 

i=l j=i  x     x     x   1   j     /     z   j I 

N 
Q((x,y); (x1,...,xi - l,...,^^)) = E r|.(x,i)p2(i, j)r2(j )y. . 

j=l 

For this process the approximation (12) has the form 

i r N l 
ECBt| CB0, R0) = (x, y)] ~ x. - [. E ^(x, i)p2(i, j )r2( j )y Jt 

for i such that x. > 0.  Similarly, for j  such that y. > 0 we have 

r M -l 
E[RJ|(BQ, R0) = (x, y)] ~ y, -   E Y.(y, j)p1(j,i)r1(i)xiJt . 

J   L i=l 

Process  S3a is obtained as  a  special case of Process S3 by taking 

♦i<y» j) =
7-^T 

and 
x. 

for all i and j . The generator Q of Process S3 is clearly of 

Lanchester square form, in the sense of resembling (5). Thus, Process 

S3a is a square law process. This similarity, incidentally, conveys 

additional information about what the coefficients in (5) should mean. 

Effects such as target priority and axiomatically derived alloca- 

tions are included within the large class of S3 processes.  See the 

Appendix for details. 

38 



We note that the system of differential equations analogous to 

this stochastic process is given by 

M 
r'(t) = - S Y.(r(t), j)p (j, i)r (i)b.(t) 
j      i=1 i     11 

for j = 1, ..., N and by 

N 
br(t) = - £  Y.(b(t), i)p (i, j)r (j)r (t) 

3=1       3 L Z 3 

for i = 1, ..., M. The reader should be aware of the potentially 

confusing notation:  the r (i) and r~(j) are mean firing rates while 

the r.(t) are surviving Red weapons. 

The assumptions for Processes SI, S2, S3 are all clearly similar. 

To interpret any of these as an area fire process requires the 

following reasoning: since a combatant's mean rate of fire is inde- 

pendent of the size of the opposing force, he can be envisioned as 

simply firing into an enemy-containing region according to a Poisson 

process determined by his own attributes (e.g., weapon, location, ...), 

which seems plausible. But it must then be assumed that a shot kills 

either exactly one enemy combatant or none, which doesn't seem entire- 

ly reasonable.  Indeed, we have previously suggested that area fire 

attrition processes are distinguished by the possibility of multiple 

kills arising from one shot. Hence it can be argued that of all the 

processes presented here only the Process Al is an area fire process, 

and that all the others are point fire processes which are grouped 

into two classes (square-law and linear-law) according to the form 

of mean engagement rates. For square-law processes the engagement 

rate depends only on the strength of the side initiating engagements, 

while for linear-law processes each engagement rate is proportional 

to the product of the strengths of the two sides. These, of course, 

correspond to rather different physical situations. 
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LI  Homogeneous Linear Law Process 

Assumptions 

1. All weapons on each side are identical 

2. The time required for a Blue weapon to detect a particular 

Red weapon is exponentially distributed with mean 1/s,. Each Blue 

weapon detects different Red weapons independently. 

3. A Blue weapon attacks every Red weapon it detects; the 

conditional probability of kill given attack is q,. The attack 

occurs instantaneously and contact is immediately lost. An attack 

cannot occur without a detection. 

4. Red weapons satisfy the same assumptions with parameters 

s2, q2« 

5. The detection and attack processes of all weapons initially 

present are mutually independent. 

Process Characterization 

Let k = s q for l =  1, 2. 

Under assumptions 1 - 5,((Bt, Rt)) is a regular step process with 

state space N x N, jump function X    given by 

X(i,j) = iJC^x + k2) 

transition  kernel    P    given by 

kl 
P((i,j),   (i,J  "  D) 

k,   + k2 

k2 
P((i,j),   (i "  1,3)) =k1 + k2 

and infinitesimal generator Q given by 

> 
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and 

Q((i,j), (i,j - D) = \±3 

Q((i,j), (i,j)) = - ij(kx + k2) 

Q((i,j), (i - 1, j) = k2ij  . 

As first order approximations for this process we have 

ErBt|(BQJ R0) = (i, j)] ~ i - (kxij)t 

= i(l - kxjt) 

ErRt|(B0, R0) = (i, j)] ~ j - (k2ij)t 

= j(l - k2it)  . 

The similarity of Q and the deterministic homogeneous Lanchester 

linear equations (4) is evident, and our process provides a physical 

interpretation (namely, inverse of mean time required to kill a parti- 

cular opponent) for the coefficients in (4). 

The reader should note the presence of an assumption concerning 

detection, rather than firing, times in this model. Indeed, square- 

and linear-law models are distinguished, in our structure, in that 

models of the former type include assumptions on firing times inde- 

pendent of the strength of the opposing force while the latter include 

assumptions on one-on-one detection times. 
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L2   Homogeneous Linear Law Process With Engagements 

Assumptions 

1. All weapons on each side are identical. 

2. The time required for a Blue weapon to detect a prescribed Red 

weapon is exponentially distributed with mean 1/s.. Each Blue weapon 

detects different Red weapons independently. 

3. A Blue weapon engages every Red weapon it attacks. 

4. All engagements are binary (i.e., one-on-one).  During an 

engagement both combatants are invulnerable to other weapons and unable 

to make further detections. 

5. The length of an engagement is exponentially distributed with 

mean l/u. An engagement terminates in exactly one of the following 

outcomes with the probabilities indicated, independent of past history. 

Outcome Probability 

Blue killed, but not Red p 

Red killed, but not Blue p„ 

Mutual survival p, = 1 - p - p„ . 

These parameters are independent of the initiator of the engagement. 

6. Red weapons satisfy assumptions 2 and 3, with mean detection 

time l/Sp. 

7. All detection processes, engagement lengths, and engagement 

outcomes are mutually independent. 

Process Characterization 
* 

To study this model we define some further notation. Let Bt 

denote the number of unengaged Blue weapons at time t, Rt the number 

of unengaged Red weapons at time t and D the number of binary engage- 

ments in progress at time t, which is also the number of Blue weapons 

and Red weapons engaged at time t. We first consider the three component 

process ((Bt, Rt, Dt))t>0 • 
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Under assumptions 1 through 7 above, the process ((B*, R*,   D )) n 

is a regular step process with state space N x N x N, jump function 

X    given by 

Ui,j>k) = ku + ij(s1 + s2) , 

transition kernel P given by 

kp u 
P((i,j,k), (i + l,j,k - 1)) = 

ku + ij(s, + s„) 

kp u 
P((i,j,k), (i, j + 1, k - l))- 

ku + ij(s1 + s2) 

kp u 
P((i,j,k), (i + l, j + l, k - l)) = 

P((i,j,k), (i - l, j - l, k + 1)) = 

ku + ij(s1 + s2) 

ij(s1 + s2) 

ku + ij(s1 + s2)  ' 

and infinitesimal generator Q given by 

Q((i,j,k), (i + 1, j, k - 1» = kp2u 

Q((i,j>k), (i, j + 1, k - 1)) = kPlu 

Q((i,j,k), (i + 1, j + 1, k - 1)) = kp3u 

Q((i,j,k), (i - 1, j - 1, k + 1)) = ij(Sl + s2) 

Q((i,j,k), (i,j,k)) = - [ku + ij(s1 + s2)]  . 

From the state of i unengaged Blue weapons,  j unengaged Red 

weapons, and k engagements in progress, four states may be reached, 

corresponding to the events "termination of one engagement with kill 

of a Red weapon", "termination of one engagement with kill of a Blue 

weapon", "termination of one engagement with mutual survival", and 

"initiation of one additional engagement".  These occur at the rates 

indicated by the expressions for Q (which, as usual, assume that 

i>0, j > 0, k>0 and must be suitably adjusted for other states). 

Based on its assumptions and the term in Q expressing engage- 

ment initiation, this process is of linear law type. But our 
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principal interest is in the survivor process ((B, , R.)) defined by 

Bt = B* + Dt 

and 

Rt=R*+Dt , 

since the number of Blue weapons surviving at time t is the sum of the 

numbers of unengaged and engaged Blue weapons surviving at time t, and 

similarly for Red.  The process ((B , R^)) is not, unfortunately, a 

regular step process and we have not yet characterized it in a useful 

manner. However, expectations of B^ and R are easy to compute from 

those of B£,. R£>  and D , because 

E[Bt] = E[B*] + E[Dt] 

and E[R ] = E[R*] + ErDt]  . 

The latter expectations might be computed, since ((B*, R*, D ))  _ 

is a regular step process, using the methods described in Section IV. 

To compute first-order approximations to E[B ] and E[R ] we first 

note that (12) and the form of the generator Q of this process imply 

that 

E[B*|(B*, R*, D0) = (i,j,k)] ~ i - [ij(s1 + s2) + ku(p2 + p3)]t , 

that 

E[R*|(B*, R*5 D0) = (ä,j,k)] ~ j - Tij(s1 + s2) - ku(P;L + p3)]t , 

and also that 

E[Dt|(B*, R*5 D0) = (i,j,k)] ~ k - [ku - ij(S;L + s2)]t  . 
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Thus 

E[Bt|(B*, R*, D0) = (i,j,k)] 

= E[B*|(B*, R*, D0) = (i,j,k)] + E[Dt|(B*0, R*, DQ) = (i,j,k)] 

~ i - ij(s1 + s2)t + ku(p2 + p3)t + k - kut + ij(s1 + s2)t 

= i + k - (p ku)t  ; 

we similarly obtain 

E[Rt|(B*, R*, D0) = (i,j,k)] = j + k - (p2ku)t  . 

The assumption that the two weapons in a binary engagement be 

invulnverable to other opposition weapons is questionable (an engaged 

weapon would seem to be relatively more vulnerable than an unengaged 

weapon) and alternatives should be sought. 
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L3  Heterogeneous Linear Law Process 

Assumptions 

1. There are  M Blue weapon types and N Red weapon types. 

2. The time required for a Blue type i weapon to detect a parti- 

cular Red type j weapon is exponentially distributed with mean 

l/s-j^Cjji). Each Blue weapon detects different Red weapons independently. 

3. A Blue weapon attacks every Red weapon it detects. The condi- 

tional probability that a Blue type i weapon kills a Red type j weapon, 

given detection and attack, is p1(j,i). 

4. Red weapons satisfy assumptions 2 and 3 with mean detection 

times l/s?(i,j) and kill probabilities p?(i,j) describing Red type j 

weapons opposing Blue type i weapons. 

5. Detection and attack processes of all weapons present are 

mutually independent. 

Process Characterization 

For q = 1, 2 and appropriate k and i    define k (k,£) = 

s (k,£)p (k,jO. Then under assumptions 1 through 5 above, the vector- 

valued survivor process ((B  Rt))t>n 
is a re9ular steP process with 

state space $} x ... x N (M + N times'), jump function X given by 

M  N 
X(x,y) = E  Z x.y.[k,(j,i) + k2(i,j)] , 

i=l j=l   J 

transition kernel P given by 
M 

V3 i=! Vl(j>1)Xi 
P((x,y); (x; y1,...,y-j - i,...,yN)) =  \(x,y)  

N 
x. Z k„(i,j)y. 

i=l 
P((x,y); (x1,...,xi - 1,...,)^; y)) =  x,(x,y)  ■ 
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and infinitesimal generator Q given by 

M 
Q((x,y); (x; y,,...,y. - l,...,yN)) = y. E k,(j,i)x. 

j j i=1 J.    j 

M  N 
Q((x,y); (x,y)) = - E  E x y. [k (j,i) + k (i,j)] 

i=l j=l x J    x      * 

N 
Q((x,y); (x1,...,xi - l,...,)^)) = x  E k2(i,j)y. . 

j=l      J 

Expectations of numbers of survivors in this process may be 

approximated using (12) in the following manner: 

i N 

E[Bt|(B0, R0) = (x,y)] ~ xi - [x.  E k2(i,j)yj]t 

j=l 

N 
= x.[l - t E k (i,j)y )] 

: j=l J 

and 

M 
E[R; ■J|(B0, RQ) = (x,y)] ~ y - [y, E k1(j,i)x/|t 

M 
= y,[i - t s k (j,i)x )1 , 

J     i=l x 

for i = 1, ..., M and j = 1, ..., N. 

Based on its underlying assumptions this process is clearly the 

heterogeneous analog of the stochastic homogeneous linear law Process 

LI.  Its infinitesimal generator Q is similar to the system (6), 

which comfirms that (6) is an appropriate deterministic heterogeneous 

linear model and provides the proper interpretations of the coeffi- 

cients in (6); namely, the inverse of the mean time required to detect 

and kill a particular opposition weapon of a given type. 
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Ml  Heterogeneous Mixed Law Process 

Assumptions 

1. Each side possesses exactly two types of weapons. 

2. Times between shots fired by a surviving type 1 Blue weapon 

are independent and identically exponentially distributed with mean 

l/rr 

3. Each such shot is directed at a target chosen according to a 

uniform distribution on the set of all Red weapons surviving at that 

time. If the target is a Red type j weapon it is killed with proba- 

bility p1(j). 

4. Red type 1 weapons satisfy assumptions 2 and 3 with mean 

firing rate r_ and kill probability p2(i) against a Blue target of 

type i. 

5. The time required for a Blue type 2 weapon to detect a parti- 

cular Red weapon of type j is exponentially distributed with mean 

l/s-.(j). A fixed Blue type 2 weapon detects different Red weapons 

independently of one another. 

6. A Blue type 2 weapon attacks every Red weapon it detects. 

The conditional probability, given detection and attack, that a Red 

weapon of type j is killed, is q-,(j). The attack occurs instan- 

taneously and contact is lost. 

7. Red type 2 weapons satisfy assumptions 5 and 6 with mean 

detection times l/s2(i) and kill probabilities q2(i) against type i 

weapons. 

8. All weapons detect and attack independently of one another. 

Process Characterization 

Under assumptions 1 through 8 above, the survivor process 

((B1, B^, RL RH))t>0 
is a re9ular steP Process with state space 
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N x N x N x N, jump function \    given by 

p (l)k + p (2)£ 
\(i,j,k,£) = irx(-i j_£± ) 

+ j [ks1(l)q1(l) + £s1(2)q1(2)] 

p (l)i + p (2)j 
+ kr2 C 2  i +  j ) 

+ £ [is2(l)q2(l) + js2(2)q2(2)]  , 

transition kernel P given by 

iripi(1) \TT1 + Jks/Dq (1) 
P((i,j,k,£);  (i.j.k - I,«)« -JLi foj>kt0    ^~ 

ir p  (2) T-A-T + jis   (2)q (2) 
P((i,j,k,i);  (i,j,M - 1)) =-AJ: ^ij.k,!)     i  

kr„p9(l) T-^--r +  Ais9(l)q9(l) 
pcci,j,k,i)j (i - i,j,k,.o) =-AJ—l(

+
i}])Ki) —l— 

kr p  (2) T^—r +   jjjs   (2)q (2) 

p((i,j,k,i); (i,j - i,k,o) =-^—xaJ,k,x)  

and infinitesimal generator Q given by 
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T-" 

Q((i,j,k,i);  (i,j,k - l,i)) = ^^(1)^-—^+ jks (i)q M) 

Q((i,J,K,£);   (i,j,k,X -  1)) = ±1^(2) ^-i-j + jis1(2)q1(2) 

p,(l)k + p,(2)£ 
Q((i,j,k,4);-(i,j,k,£)) = - { ir^-i rTT± ) 

+ j[ks1(l)qi(l)  +  is1(2)q1(2)] 

p9(l)i + p?(2)j 
+ kr2 C2      i + j ) 

+ i[is2(l)q2(l) + js2(2)q2(2)]} 

Q((i,j,k,jt);  (i - l,j,k,i» = kr2p2(l) ^-i-j + jtis2(l)q2(l) 

Q((i,J,k,X);   (i,j  -  l,k,£)) = kr2P2(2) j-j-j + jejs2(2)q2(2)     . 

For the approximation (12) we have 

E[BJ|(BJ,  BQ,  RJ,  RQ) = (i,j,k,X)] 

~ i - tkr2p2(l) ^ ii82(l)qa(l)]t 

kr p  (1) 
= i(l -  tf  ±\*.       Xs2(l)q2(l)])     , 

E[B^|(BJ,   BQ,   RQ,   RQ) = (i,j,k,i)] 

kr p (2) 
~ j(1 "  ^  iVj       + As2(2)q2(2)])     ' 
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E[RJ|(BJ, B2
0,  RJ, R2

0)  = (i,j,M)] 

ir P (1) 
~ k(l - tf  ^ £ + js^Dq^l)]) , 

and 

E[R^|(BJ5 B*, RJ, R2
0)  = (i,j,k,£)] 

ir P (2) 
~ £(1 - t[ k\^  + js1(2)q1(2)]) , 

respectively. 

The four states which can be reached from state (i,j,k,£) correspond 

to deaths of the four different weapon types and are entered at the 

"rates" indicated in the expression for Q .  Comparing Q here with 

the generators of the Processes SI and L3 yields the "mixed law" 

interpretation of this process, as does a comparison of the families 

of assumptions underlying the three processes. 

No heterogeneous mixed laws have been discovered before.  Without 

families of assumptions to use in making generalizations, it was not 

known what appropriate process would be. Moreover, the Process Ml 

can be extended to allow an arbitrary number of weapon types on 

each side. 
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Mia  Homogeneous Mixed Law Process 

Assumptions 

1. All weapons on each side are identical. 

2. Red weapons satisfy assumptions 2 and 3 of process Ml with 

parameters r, p. 

3. Blue weapons satisfy assumptions 5 and 6 of process Ml with 

parameters s, q. 

4. Detection and attack processes of all weapons are mutually 

independent. 

Process Characterization 

Under assumptions 1 to 4, the process ((B. , R+.))1_^n is a regular 

step process with state space N x N, jump function \  "given by 

\(i,j) = irp + ijsq , 

transition kernel P given by 

P((i,j), (i,j - D) = 

P((i,j), (i - l,j)) = 

IR. 
rp + jsq 

jsq 
rp + jsq 

and infinitesimal generator Q given by 

Q((i,j), (i, J - D) = irp 

Q((i,j), (i,j)) = - (irp + ijsq) 

Q((i,j), (i - 1, j)) = ijsq . 

First-order approximations in this case are given by 

E[Bt|(B0, R0) = (i,j)] = i - jrpt 

and 

E[Rt|(B0, R0) = (i,j)] = j(l - t[isq]), 

respectively. 
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APPENDIX 

PROBABILISTIC TECHNICALITIES AND PROOFS OF RESULTS 

We give here the proofs of the characterization theorems in the 

main body of the paper. First, however, some probabilitistic concepts 

related to regular step processes will be discussed in further detail. 

Let E be a countable set with discrete a-algebra E . A Markov 

kernel on the measurable space (E, E_) is a mapping P of E x E into 

[0, 1] such that A - P(i, A) is a probability measure on | for each 

i e E. Since E is discrete the probability P(i, •) is determined 

by its values on singleton sets and P may hence be considered as the 

matrix P defined by 

P(i, j) = P(i, | j\)    . 

If f is a bounded or nonnegative function on E , Pf denotes the 

function defined by 

Pf(i) = E P(i, j)f(j)  . 
jeE 

Given a function X:  E -» [0, <=) and a Markov kernel P on (E, |) 

such that P(i, i) = 0 for all i e E such that \(i) > 0, there exists 

a continuous parameter Markov process X = (fl, E> X., P ) with state 

space (E, E) satisfying the following intuitive description.  If the 

process enters a state i with X(i) = 0 it remains there forever 

after (such states are said to be absorbing). When the process enters 

a state i with \(i) > 0 its sojourn time there is exponentially 

distributed with mean 1/X(i) and independent of the past history of 

the process. At the end of this time, the process jumps (instantan- 

eously) to a new state of E according to the probability distribution 
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P(i, •)> independent of the present time, the length of its sojourn 

in state i and all previous jumps. Hence, successive states entered 

form a Markov chain with transition matrix P . 

DEFINITION.  X is the regular step process with jump function \ 

and transition kernel P . 

P denotes the probability law of the process given that Xn = i; 

expectation with respect to this measure is denoted by E1, so 

E1[Y] = /*Y(uü)P1(du)) 

n 
for suitable F-measurable random variables Y. 

Let bE denote the set of all bounded (and necessarily E-measurable) 

functions on E .  Then the relations 

Ptf(i) = E
d[f(Xt)] 

define a semigroup (P^)^ n °f bounded linear operators on bE, called 

the transition function of X .  If f is the indicator function 

I..» of the singleton set |j| then 

Ptf(i) = P
1|Xt = j} =  Pt(i, j) 

and for any g , 

Ptg(i) = E Pt(i, j)g(j) . 
j 

Hence (P^) is represented by a family of stochastic matrices; we do 

not notationally distinguish the operator P. and the corresponding 

matrix.  Pn is the identity matrix. 

The transition function (P.,.) is uniquely determined by its 

infinitesimal generator, which is the (possibly unbounded) linear 

operator Q defined by 
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p f(i) - f(i) 
Qf (i) = lim — -  . 

t iO 

Q is represented by the matrix Q given by 

Pt(i, j) - 5(i, j) 
Q(i, j) = lim f  , 

tiO 

since P» is the identity matrix. 

Stated alternatively, the matrix-valued function t - P is 

differentiable (componentwise) and 

P* = QP t  H t 

for all t ; in particular 

Q=Po • 

The transition semigroup is given in terms of the infinitesimal 

generator Q by formal solution of the system P' = QP of linear 

differential equations by exponentials; thus 

Pt - e* 

where 

For regular step process, Q is given explicitly in terms of 

the jump function X    and transition kernel P by the relations 

Q(i, j) = 

- X(i)       if j = i 

X(i)P(i, j)   if j ?  i , 

which may be proved computationally. 
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Fundamental to our claim that the stochastic processes characterized 

in the following theorems are analogs of Lanchester's differential 

equation models of combat is the "differential" interpretation of the 

infinitesimal generator Q . From the representation P = e ^ we see 

that 

Ph(i, j) = 6(i, j) + hQ(i, j) + o(h) 

as h - 0.  In particular for j ^  i 

Ph(i, j) = hQ(i, j) + o(h) ,   h - 0 . 

That is, the probability of a jump from i to j in the interval 

(0, h] is approximately h • Q(i, j) so that one can interpret 

Q(i, j) as the infinitesimal rate at which the process moves from 

state i to state j . 

We next present proofs of the characterization theorems for each 

of our stochastic attrition processes. 
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Al   Homogeneous Square Law Area Fire Process 

We construct this process in the following manner. Let E = N xU, 

where N = { 0, 1, 2, ...}, the set of natural numbers. As the sample 

space fi we take the family of all functions uu = (cu-,, uu«) mapping 

[0, a») into E with the properties that 

a) IM is right continuous on [0, »)• for each time t > 0, 

lim uu(u) = ou(t); 
uit 

all limits in E are taken in the product of the discrete topologies 

on the factor spaces; 

b) u) possesses left-hand limits on (0, »); that is, for each 

t > 0 

lim f(u) 
ut t 

exists. 

We define two families (B ) Q and (Rt) 0 of coordinate random 

variables on Q by 

Bt(ou) =(!>!_( t) ,   t > 0 

and 

Rt(u)> = u>2(t) ,   t > 0 , 

respectively. The interpretation is that B^ is the number of sur- 

viving Blue combatants at time t and R the number of Red combatants 

surviving at time t. 

Further, we let E^ be the history generated by the random 

variables, {(B , R ) : 0<s<t}, which can be interpreted as the 

history of the attrition process up until time t, and let 
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E = a((Bu, Ru): u > 0), 

which is the entire history of the process. 

For each (i, j) e E, let p^1'^ denote the probability law of the 

attrition process governed by assumptions 1-5 on page 23, conditioned 

on the event {(Bn, Rn) = (i, j)}. While one can give the details of 

the construction of these measures (beginning with probabilities 

assigned to appropriate cylinder sets and proceeding through an appli- 

cation of the Kolmogorov Extension Theoren) such an approach is not 

appropriate in this exposition. So, instead, we take for granted the 

existence of such probabilities and derive in our Theorems characteri- 

zations of the resultant stochastic attrition process. 

(1) THEOREM. Subject to assumptions 1-5 of the family Al, the 

process 

(n, E, Et, (Bt, Rt), p^'J)) 

is a regular step process with 

a) state space (E, E); we remind that E = i x N and | is the 

discrete a-algebra; 

b) jump function X given by 

lii^ri - ci-P1)j] + jr2ri - ci-p^1]   if i > o, j > o 

(2) Ui,j) = j 
|0 ifi = 0orj=0; 

c) transition kernel P given for states (i,j) with i > 0 and 

j > 0 by 
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ir 

P((i,j); CM» = Wx(i,J) 0±<^ 

(3) 

.J^feX1.; p?)k p2' P((i,j); (k,j)) =  *v x(1>^ =— ,   0<k<i 

d) infinitesimal generator Q given for states (i,j) with i > 0 

and j > 0 by 

Q((i,j); <i,D) = iri(j)(l - P]/ Pi"' »     0 < £ < j 

Q((i,j); (i,J)) = - (i^Cl - CI-P-L^] + jr2[l - d-p^
1]) 

Q((i,j); (k,j)) = jr2(j)(l - ?1)
k p*"k ,     0 < k < i  . 

If i = 0 or j = 0,Q((i,j); x) = 0 for all x e E. 

PROOF.  For detailed arguments we refer to the proof of Theorem (6). 

First of all, note that if some Blue combatant fires a shot at an 

instant when there are j  surviving Reds, the probability that i 

Reds survive is the binomial probability 

(3 j\i - Pl)* P{~1 

in particular, the probability that the shot causes one or more 

fatalities is 

q1 =  1 - (1 - p1)
j  . 

Thus if we denote by SQ and S„ the times of the first fatality- 

causing shots fired by Blue and Red, respectively, then with respect 

to the probability P«1'^, Sfi and SR are, each conditioned on non- 

occurrence of the other, independent and exponentially distributed 

with means l/i?-^ and l/jr2
q2> respectively. It follows (see the 
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proof of Theorem (6)) that the time 

V = infjt:  (Bt, Rt) t  (B0, R0)| 

of the first change of state of the process is exponentially distributed 

with mean l/Cir.q + jr q ) (with respect to P^1'  , of course; note also 

that q, is a function of j and q? a function of i , even though we 

have suppressed this dependence in our notation) and that, moreover 

p(1'j)UBv+' Rv+) e J(i' £):     ° - l K jH 
= P(i»j)(SB<8R| 

iriqi 
iriqi + jr2q2 

while 

P^'J){(BV+, Kv+) € j(k, j):   0 < k < i}} 

-P(i>J)|Sp<sR| 

jr2q2 

iriqi + ^r2q2 

Let KD be the number of fatalities caused by the first fatality- 
D 

causing shot, if there is one, fired by a Blue combatant. Then 

conditioned on the event {SR < SR|, Kß is "binomially" distributed on 

\c,   ..., j - l},with respect to P^Xi3\ .in the sense that 

P(i'j)|KR = £|SR <  SR| -i"B   R> 

1 - (1 - Px)
3 

I =  0, ..., j - 1  ; 
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the normalization is required in order that 

s   P(I'J)1KR = i|S- < Sp| = 1    . 
£=0 B '   B R 

We then have for 0 < i <  j 

pCi'J)KBv+> V) = (i> *>' 

= P(i'j)|SB<SR,  KB = j   - t\ 

= P(1'j)|SB < SR}P(i'j>|KB = j   -  £|SB < SR[ 

iriqi   (j-^i-Px)1 PJ'£ 
ir
iqi + jr2q2    1 - (1-Pl)3 

iriqi    (i)^-pi^ PJ"' 
iriqi + jr2Q2      Ql 

= P((i,j), (i,A)) 

where P is defined by (3) . 

We leave to the reader, should he desire the details, the entirely 

analogous proof that 

p(i'j)i(Bv+, v5 = (k)j)* 
i ,,   Nk i-k 

_ jr2 k (1-P2
)  P2 

'= P((i,j)5 (k,j)) 

for 0 < k < i . 
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Hence with respect to P^ *     ,   the random variable V is 

exponentially distributed with mean l/\(i,j) where \    is defined by 

(2) and (By , R^ ) is distributed as P((i,j); •). The extension to 

arbitrary fixed times is omitted. [1 

The binomial distributions postulated in assumptions 3 and 4 have 

the (perhaps) unrealistic effect of permitting each side with positive 

probability to annihilate the other with a single shot. 

It is, from a theoretical standpoint, quite acceptable to replace 

the family of binomial distributions by two families fcp-(-): j > lj 

and JY.(-): i > l} of probabilities on the nonnegative integers with 

the property that for each j , CD . is a probability distribution on 

JO, ..., j} and for each i , f. is a probability distribution on 

JO, ..., ii. The interpretation is then that cp.(£) is the proba- 

bility that a shot fired by a Blue combatant at an instant when there 

are j  surviving Reds, kills exactly j - i  of those j Reds, and 

similarly for the ¥..  We may then, with only notational changes, obtain 

the following generalization of Theorem (1). 

( 4)    THEOREM.  The process 

(n, E, Et, (Bt, Rt), P(i'j)) 

is a regular step process with 

a) state space (E, E); 

b) jump function X  given by 

ir 

X(i, j) = 

x(l - cpjCJ)) + jr2(l - Y±(i))  if i > 0, j > 0 

0 if i = 0 or j = 0; 
\ 
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c) transition kernel P given for states (i,j) with i > 0 and 

j > 0 by 

ir, cp-U) 
P((i,j); (i,£)) = X(il) 0 < £ < j 

P((i,j); (k,j)) = X(i  j)      0<k<i  ; 

d) infinitesimal generator Q given for states (i,j) with i > 0, 

j > 0 by 

Q((i,j), (i,i)) = ±r± epjCA) ,  0 < I <  j 

Q((i,j), (i,j)) =-H±r1<l - cpjCj)) + jr2(l - Y±(i))] 

Q((i,j), (K,j)) = jr2 Y±(k) ,  0<k<i . 

If i = 0 or j = 0, Q((i,j),x) = 0 for all x e E. 

There is no need to repeat the proof of (1); it goes through 

here with only notational changes. 

One pays a price, however, for such generality and that price is 

that most such distributions |cp.[ and \lA   do not arise from a set of 

physical assumptions concerning the attrition process being modeled. 

The binomial distributions, for all their other unpalatable character- 

istics, at least do have a physical basis in the assumption that each 

shot fired, for example, at a Red target force of j survivors kills 

each Red with probability p, and different Reds independently of one 

another, for then the number of Reds surviving the shot is binomially 

distributed with parameters (j, 1 - p^. 

If the distributions |cp.| and |y.} are all of the form 
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cpj(j-l) = Px 

cPj(J) = 1-Pi 

(5) 
l 

Y.(i) = l-p2  , 

¥.,(1-1) = P2 

where 0 < p. < 1, 0 < p_ < 1, then the Process SI below is obtained, 
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SI   Homogeneous Square Law Process 

The canonical stochastic process 

(n, E, Et, (Bt, Rt» 

remains unchanged. The relevant assumptions are the family of 

assumptions 1 through 5 on page 27. At the risk of possible confusion, 

but in order to prevent a hopeless proliferation of notations for 

various families of probability measures on (fl, F) we again denote by 

pQ1»^; the probability law of the attrition process governed by this 

family of assumptions, subject to the initial conditions BQ = i, RQ = j. 

Thus, while the family of assumptions has changed, the notation has not; 

the reader should keep this in mind here and throughout the exposition. 

(6) THEOREM. Under assumptions 1-5 of the family SI, the process 

(n, E, Et, (Bt, Rt), P
(l,3)) 

is a regular step Markov process with 

a) state space (E, §), where E. is the o-algebra of all subsets 

of E; 

b) jump function \    given by 

(7)        X(i, j) = 

ic. + jc2   if i > 0 and j > 0 

0 if i = 0 or j = 0  ; 

c) transition kernel P given for states (i, j) e E with i > 0 

and j > 0 by 

icn 
P((i, J), (i, J - D)= 

(8) 
1C1 + JC2 

Z)C2 
P,.<  j), (i - 1, J))=ic + je, 
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d) infinitesimal generator Q given for states (i, j) with 

i > 0 and j > 0 by 

Q((i, J), (i, j - 1)) = ±c1 

(9) Q((i, j), (i, j)) = - (icx + jc2) 

Q((i, j), (i - 1, j)) = jc2 . 

If i = 0 or j = 0, Q((i, j), x) = 0 for all x e E. 

PROOF.  Let EQ = |(i, j) : i > 0, j > 0}.  Since there clearly is no 

further attrition once one side is annihilated, every state in E - En 
is absorbing. Also, with probability one the state (0, 0) is never 

entered unless the process begins there. 

We begin by showing that if (i, j) e E~ and t > 0, then 

PCl'J)i(Bu, Ru) = (i, j) for all u e TO, tl| 

= P(i'j)|(Bt, Rt) = (i, j)} 

= exp [ - (ic1 + jc2)tl  . 

Let V denote the time at which the process first changes state, 

which in this case is also the first time at which a fatal shot is 

fired. We are trying to compute p^'^'jv > t}. 

Fix attention on a particular Blue combatant, say the k  one and 

consider the times B
S
Q  

a 0, _S^k \   R2  ' •"  at wnicn ne would 

fire shots if he survived and continued firing forever.  By assumptions 

2) and 3) the sequence ( S^ ') Q is a simple Poisson process with 

rate r . Suppose in addition tfhat all shots fired by all combatants 

have only "hypothetical" effects in the sense that no combatants are 

killed but a record is kept of shots which would have been fatal with- 

out this restriction. This converts the attrition process into a non- 

terminating process in which each combatant continues firing shots 
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forever, some of which cause "hypothetical" kills of opponents. The 

hypothetical process not only has nicer behavior than the 

original attrition process but also serves to describe the attri- 

tion process because of the following two properties: 

(a) The time of the first hypothetical kill is the time at which 

the attrition process first changes state; 

(b) The side suffering the first hypothetical casualty also suffers 

the first casualty in the attrition process. 

Thus consideration of the process of hypothetical kills suffices 

by (a) to compute the jump function of the attrition process and by 

(b) to compute its transition kernel, as well as by (a) and (b) 

together to establish the Markov property.  Computations involving 

the process of hypothetical kills are easy to do, so we shall use 

throughout the approach of considering processes of hypothetical kills. 

By the Random Sampling Theorem for Poisson processes, the 
(k^ th times (-S^ ') n of hypothetically fatal shots fired by the k  Blue B n  n>u 

combatant fornPa Poisson process with rate c, = r p. . 

Similarly, for each i  , the set (DS^O of times of hypothetically 

fatal shots fired by the I      Red combatant is a simple Poisson process 
with rate c„. 

By assumption 5) the random variables S^  , ..., RS^1^ 

„Si; ' , ..., TJS!| ' are mutually independent with respect to P^ '-'•', 

Furthermore V > t if and only if S:; ' > t for k = 1, ..., i and 

CCJD 
RJ   > t for I  = 1, ..., j, since 

V = min<S(1)      S(i)  S(1)      S(jH 
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Therefore 

P^'^IV > t} = P(i'J){B4
k) > t,  k = 1,   ...,   i;  RS^> > t,   £  = 1,   ...,   j} 

= I" n   pCi'j)lBs^k) > tfl I" n   P^^S^ > tfl 

■ Li •Ti, •""] " 
= exp  [  -  (icx + jc2)t]     . 

The same reasoning and Memoryless" properties of the exponential 

distribution apply to show that for each t and s 

P(ls:i)|(Bu, Ru) = (Bs, Rs) for all u e [s, s + t]||s| 

= exp [ - (c-jBg + c2Rg)t]  . 

This proves that the process ((B., Rt)) has jump function \    defined 

in ( 7) above. 

We next show that for (i, j) e EQ, 

p(i'J)KBv+> *W = Ci- l, J)} =TZ-TTc 

and 

PCi'J)iCBv+J Rv+) = (i, 3 - 1)1=15^3 

where 

is the state entered by the process at the time V of the first 

fatality.  It seems plausible that that state must be either 

(i - 1, j), if the first fatality is suffered by Blue, or (i, j - 1), 

if the first fatality is suffered by Red. 
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I 

Let 

and 

Then 

and 

SB=nlnlBSi1)»   — •   B8!^} 

8RrdBtfll>.   — •  RSiJ)}   ' 

pCiJ)iCBv+, V-) = (i " x' j)* = P(i,j)W = sRf 

= p(i>^{sB > SR| 

p(i,J)i(Bv+» Rv+
) = (i» j * X)J = p(i,j)iv = S

B1 
= p(i>j))sB<sR|   . 

Since Sß is exponentially distributed with parameter ic. and S„ is 

exponentially distributed with parameter jc« and S~, Sp are independent 

(all these assertions hold with respect to the probability measure 

p'1»-3', of course), it follows that 

p(i'j){sB = SR\ = 0 

and therefore 

P(i,J){(Bv+, Rv+) ef(i - 1, j), (i, j - 1)}} = 1 . 

We next compute that 

P(i'J){SR < SB} = E^'^CP^'^jSj^ < SB|SR|] 

= jc2 J     exp ( - jc2v) exp ( - i^v) dv 
0 

ic1 + jc2 » 
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where E^ »■'' denotes expectation with respect to the probability P^1'^, 

Similarly, 

,<i,J)lsB<sRl=i; 
1C. 

1 + 1C2 

For each t let Vt denote the time of the first fatal shot fired 

after time t . Then again using the "memoryless" property of the 

exponential distribution, one obtains 

,(i,j) 

(Bt,Rt) 

K,+' v
} = (k' £)||tf t     t 

= P K+' v* = (k> l)\ 
=  P((Bt, Rt), (k, £)), 

where P is defined by (8), for each t and (k, £). 

Hence ((B , R+-))t^n 
nas tne Markov property, the given jump 

function, and the given transition kernel. That this process then 

has the infinitesimal generator Q. given in (9) follows from the 

theory of regular step processes, cf p. 57. 

Here are some additional properties of this process which are of 

physical interest. 

COROLLARY.  The following properties hold. 

1) With probability one, the functions t -» B. and t -♦ R. are 
nondecreasing; 

2) If i / 0, j / 0, then 

P^1,:^{(Bt, Rt) = (0, 0) for some t} = 0 . 

Property 1) certainly makes sense:  if there are no reinforce- 

ments, surviving force strengths can only decrease. The second 

assertion, which is true even if c, = c„ and initial force strengths 

are numerically equal, states the "mutual annihilation at time t = »n 

which occurs in the deterministic Lanchester square model is almost 

surely impossible in this model. 
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-WVT 

We wish to emphasize that although the vector process ((B , R1-))t^n 

is a Markov process, neither of the individual survivor processes 

(Bt^t>0 and (R^^n is Markovian, at least with respect to the family of 

histories (Et)t>0~.  If t is fixed, then the history |t contains 

information other than the current state B which is helpful in 

predicting the future course of the process (B ); that is, in 

predicting (Bg) t. That information is, of course, the current 

number R of Red~survivors.  (It couldn't be anything else, for 

otherwise ((B , R )) wouldn't have the Markov property.) 

This model can be extended to allow for reinforcements which arrive 

in a particular manner, namely, according to compound Poisson processes, 

as we now indicate. 

Feller (1966) contains sufficient background. For our purposes 

a compound Poisson process is defined by a positive number a and 

a probability distribution cp on N* = {1, 2, ...}. Let TQ = 0, 

T,, T9, ... be the times of arrivals of a simple Poisson process 

with rate a and let X,, X2, ... be independent and identically 

distributed as cp . Assume that (T ) and (Xk) are independent and 

define 

N =  Z   X ,   t > 0 . 
n:T <t n— 

One interprets (N.) is an arrival counting process; that is, Nt is 

the number of objects which have arrived up until time t . At each 

of the times T,, T9, ... a random number of objects arrives, which is 

distributed as cp . 

Consider now the following additional assumptions. 

6. Reinforcements to the Blue side arrive according to a compound 

Poisson process with parameters (a-,> cp-,).  Reinforcements to the Red 

side arrive according to a compound Poisson process with parameters 

(a2> cp2). All reinforcements immediately enter the combat. 
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7. The two reinforcement processes are independent of each other 

and of all firing processes. 

For (i,j) e E, let p^1»^ denote the probability law of the homo- 

geneous square law process with reinforcements, governed by assumptions 

1-7 above and conditioned on the event { (Bn, Rn) = (i, j)|. 

(10) THEOREM. The process 

(n, E, Et, (Bt, Rt), P
(i>j)) 

is a regular step process with 

a) state space (E, E) as defined for Theorem (6); 

b) jump function X    given 

IiCl + ^C2 + al + a2    if i > 0 and j > 0 

{a^ + a2 if i = 0 or j = 0 ; 

c) transition kernel P given for states (i, j) with i > 0 and 

j > 0 by 

icl 
P((i, j);  (i, J - D) = ic    .  ,c    . n    . „ lc-i   +  jc_  + a-i   + In 

P((i, j); (i - i, d)) = iCi + jc*+ tti + ag 

(12a) o 

p«i, »: (i + k, j)) -^(k) iCi t jC; I Bi ^ a 

P((i,  j);  (i,  j ♦ i» =V2(i)l__n_^__ 

and for states (i, j) with i = 0 or j = 0 by 

P((i, J); (i + K  j)) = cp,(k)  ^— , k > 1 
(12b) x   * 

P((i, j); (i, J + £)) = cp9U)  1—- , I > 1  ; 
*        a-j_ + a2 
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d) infinitesimal generator Q given for states (i, j) with 

i > 0, j > 0 by 

(13a) 

Q((i, j) 

Q((i, j) 

Q((i, 3) 

Q((i, 3) 

Q((i, j) 

(i, j - 1)) = iC;L 

(i - 1, j)) = jc2 

(i + k, j)) = a^Ck) 

(i, j + i)) = a2cp2(X) 

(i, j)) - (ic-L + jc2 + ax + a2) 

and for states (i, j) with i = 0 or j = 0 by 

(13b) 

Q((i, j); (i + k, j)) = axcpx(k) 

Q((i, j); (i, j + £)) = a^p2(l) 

Q((i, j); (i, j))   = - (ax + a2) 

PROOF. We employ the same notation as in the proof of the preceding 

Theorem, with the following additions. Let A_ denote the time of the 

arrival of the first group of Blue reinforcements, let A~ denote the 

time at which the first contingent of Red reinforcements arrives. Let 

X^, Xp denote the respective sizes of these two groups of reinforcements, 

The time 

V = inf{t: (Bt, Rfc) ?  (BQ, RQ)} 

at which the process first changes state is now given by 

V = minjSB, SR, AB, A^ 

where SR, SR are as defined in the proof of Theorem (6). 

That is, the first change of state occurs in exactly one of the 

following ways: 

i) A fatal shot is fired by Blue before Red fires a fatal shot and 

before any reinforcements arrive; that is 

Sr> <  Sp,   S_ < A_, 'B B   B: SB<AR 
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ii) Red fires a fatal shot before Blue does and before any 

reinforcements arrive: 

SR < SB'   SR < V   SR < AR 
iii) Some Blue reinforcements arrive before any Red reinforcements 

do and before any fatal shots are fired: 

AB < V   AB < SR'   AB < AR 

.v) Some Red reinforcements arrive before the arrival of any Blue 

reinforcements and before any fatalities: 

\  < SB'   AR < SR'   AR < AB  • 

By assumptions 2, 3, 4, 5, 6, and 7, the random variables SR, SR, 

A„, AD are independent and exponentially distributed with means 1/ic , 
B  R -L 
1/jc , 1/a-, and l/a?, respectively. Therefore V is exponentially 

distributed with mean l/(ic + jc + a-, + do) = Uijj); in other words 

( 14)    P(l>3}|(BU,  Ru) = (i,   j)forO<u<t}= exp[  -  \(±,   j)t] 

for all (i, j) and t , where \  is given by (11). 

Moreover, since 

p(i'J)iSB = SR °r SB = AB °r SB = AR °r SR = AB °r SR = AR °r AB = AR ^ = ° 

it follows that 

P(i'")(Bv+, R^) . Ei>d(  = 1 

where 

E±j = |(i - 1, j), (i, j - 1)|U {(k, j): k > i} 

U 'j (i, I):   i > j\. 

That is, two or more simultaneous fatalities (on either the same or 

opposite sides) or a simultaneous fatality and arrival of reinforcements, 

fail to occur almost surely. 
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Proceeding as in the proof of Theorem (6) we see that 

P(i'j)j(Bv+, Rv+) = (i, j - l)f 

=P(i>j)|sB<SR, SB<AB, SB< AR} 

iCl 
iCl + ^°2 + al + a2 ' 

that 

P(i>j){(Bv+, Rv+) = (i - 1, j)} 

= P(i'J)|SR< SB,   SR<AB,   SR<AR[ 

:2 
icl + 3°2 + al + a2   ' 

that 

jX±,J)((Bv+» RV+) Gl(k> j):      k> ^ 

=  p(i'J)K<SB'   AB<SR>   AB
<A

RI 

'1 
ic1 + 3C2 + a1 + a2 

and,   finally,   that 

P    '     KB
V+'  

RV+) ei(i'  £):       l > j^ 

=p(i'J)lAR<SB'   AR<SR'   AR<AB} 
a o 

" ici + ^c2 + ai + a2    ' 

Let us consider the latter two expressions in more detail.  Since 

(B„ , R.. ) = (k + i, j) with k > 0 if and only if the first event 

causing a change of state is the arrival of a group of Blue reinforcements 
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which number exactly k,   we have 

p(i'J)iCBv+>   V5  =  (i  + k'   j)( 

= p(i'J)lÄB<SB'   AB<SR>   h< V   h = ^    • 

By properties of the compound Poisson process of Blue reinforcements 

and assumption 7, 2L. is, with respect to the probability V^1,-i   , 

independent of A_, S„, S„, and A,,, and therefore 

P(i'^iAB<SB, AB<SR5 AB<SR, X^k} 

(15a)    = P^»^)^ < sB, AB < SR, AB < SR| P^'^iXj, = k} 

±c±  + jc2 + a + a2 ^l'   ' * 

Through entirely analogous reasoning we are able to obtain 

p(i'J)i(Bv+' 
Rv+) = (i' j + ^ 

(15b) a2 
, A  cp9(k) 
1 1 + J   2 +  al  a2 

for each i >  0. 

We may, on the basis of (12), summarize (15) in the form 

(16)    P(i'j){(Bv+, Rv+) = (k, l)\   = P((i,j), (k, I)) 

for all (i, j), (k, I)  e E. 
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Using standard arguments concerning the exponential distribution, 

one extends (14) to 

P(i';])|(Bu> Ru) = (Bs, Rs) for s < u < s + t||8| 

= exp T - X(Bs, Rs)t] 

and (16) to 

P(1>j){(Bv+, Rv+) = (k, £)|ES| 
s    s 

= P((BS, Rs); (k, £)), 

where 

\7s = infju > s: (Bu, Ru) *  (Bs, Rg)} 

is the time of the first change of state of the process after time t. 

These last two statements combine to complete the proof of the 

Theorem. 

Note that the process with reinforcements has no absorbing 

states. 

Other types of assumptions concerning reinforcements are possible, 

but would be more difficult to handle and are almost certain to destroy 

the Markovian property of the process, although if the resultant model 

were a semi-Markov process it might still be tractable. 
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S2   Heterogeneous Square Law Process 

For heterogeneous processes we need to construct a new sample 

space. Throughout we assume that there are M Blue weapon types 

(the well-established terminology "weapon types", as opposed to "types 

of combatants", will be used in all our discussions of heterogeneous 

processes) and N Red weapon types. There is no assumption that at 

least one of each type of weapon be present. 

We take as our state space, therefore, the set 

E=NxNx...xN   (M+N times) 

together with the discrete o-algebra E. 

As sample space Q    we again have the family of all mappings 

uu = (ujp ..., uujj, uip ..., iDjJ) of mappings of [0, ») into Q which 

are right continuous and have left-hand limits everywhere. We define 

coordinate vector-valued random processes (g )   and (R )   by 

§t(w) = (uu^t), ..., a^(t)) 

Rt(u0 = (u)£(t), ..., uu^(t))  , 

and coordinate processes (Bt)t>0» " ''^Bt^t>0} ^Rt^t>0' " ''^Rt^t>0 by 

,k, B £<«») = «^(t) > 1 < k < M 

R*(w) = w't(t)  ,   1 < I <  N 

so that, in particular, 

Bt 
= (Bt> •••> Bt^ 

and 

,Rt 
= (R^-5 • • • J R^-) 
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for each t .  B. is the number of Blue type k weapons surviving at 

time t, B. the Blue force surviving at time t, R* the number of type l 

Red weapons surviving at time t, and R. the surviving Red force at 

time t. 

As before, we put 

Et = a|(Bs, Rs):  0 < s < t} 

and 

E = a|(Bs, RJ:  s > 0\    . 

F is the history of the attrition process up until time t and F its 

entire history 

We denote points in E in the form (x,y) where x e N and y e N ; 

x thus is a state which the vector of Blue surviving weapons may 

assume and similarly for y and Red.  x.  corresponds to surviving 

Blue type i weapons and y. to surviving Red type j weapons. 

For each (x,y) e E, let P^ '^' denote the probability law on 

(0, E) °f the attrition process governed by assumptions 1-6 of the 

Process S2, when (Bg, RQ) = (x, y). 

(17)   THEOREM.  Under the S2 assumptions, 

(n, E, Et, (Bt, Rt), P
(x'^) 

is a regular step process with 

a) state space (E, |) as defined above; 

b) jump function \    given by 

i:x.>0 j:y.>0 
[c2(i,j)y + c1(j,i)xi]  if x jt  0, y / 0 
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c) transition kernel P defined for states (x,y) with x / 0 and 

y ^ 0 by 

M 
£ c1(j,i)xi 

P((x,y); (x;y1L...,y^-l,...,yN)) = 
X~\(x y)  

for j = 1, ..., N such that y. > 0 and by 

N 
E c2(i,j)y. 

P((x,y); (x1,...,x1-l,...,^!;y)) = 
3=1

x(X}y)  

for all i with 1 < i < M and x. > 0; 

d) infinitesimal generator Q given for states (x,y) with x ^ 0 

and y ^ 0 by 

M 
IE c (j,i)x. if y > 0 
i=l x    x      3 

0 if y. = 0 

Q((x,y);(x,y))      £    E [c (i,j)y + c (j,i)x,] 
i:X;.>0 j:y.>0 * 3 

N 

Q((x,y);.(x1,...,xi-l,...,xM;y)) = 

E c2(i,j)y.   if x. > 0 
|i=l       J 

0 if x. = 0 

and for states (x,y) with x = 0 or y = 0 by Q((x,y); Q)  = 0 for all 

C e E. 
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PROOF. We recall that for q = 1,2 and appropriate k,£ we have defined 

cq(k,£) = rq(k,£)pq(k,jO . 

For i = 1, ..., M let 

SR(i) = inf{t: B£ 7* BQ} 

be the time at which the first fatality to a Blue type i weapon occurs. 

If there is no such time, and in particular if BQ = 0, we put S~(i) = + ». 

Similarly, let 

SB(j) = inf jt:  R3
tji R3

Q\    , j  = 1,   ...,  N 

be the time of the first fatality, if there is one, to a Red type j 

weapon. 

We claim that 

P(X'y)|SR(i) > t, i = 1, ..., M, SB(j) > t, j = 1, ..., N} 

(18) 

= exp ( - t   E     S  [c2(i,j)y. + c1(j,i)xi]) 
i:x.>0 j:y->0        J 

from which it follows that, if we define 

V = infjt: (Bt, Rt) ?  (B0, R0)| 

then since 

V = minjSB(l), ..., Sß(N), SR(1), ..., SR(M)}  , 

one has 

p(x,y)|v > t} = exp [ - X(x,y)t]  . 
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Now, how are we to prove (18)? If all kills were hypothetical 

only, then for a given j and i , the times of "hypothetical" kills 

of type j Red weapons by type i Blue weapons would, by assumptions 2 

and 4 form a Poisson process with rate c.(j,i)x., so long as y. > 0. 

Hence by hypothesis 6, "kills" of type j Red weapons occur hypothetically 

at the arrival times of a Poisson process with rate 

E c1(j,i)xi ; 

in particular the time S£(j) of the first such hypothetical kill is 

exponentially distributed with mean ( £ c.(j,i)x.)~ if y. > 0 and 
i x     1      3 

mean + » if y. = 0. Moreover, by hypothesis 3, S£(l), ..., S*(N) are 
-J x v) 

independent with respect to Pv ,J. 

If S£(i) similarly stands for the time of the first hypothetical 

kill of a Blue type i weapon, then S*(i) is exponentially distributed, 

with respect to the probability P^x'  , with mean 

((S c2(i,j)yj)"
1   if Xi > 0 

+~ if x. = 0 . 

Assumption 3 assures us that s£(l), ..., S&(M) are independent and 

assumption 6 implies that |S*(1), ..., S*(N)| and Js|?(l), ..., S*(M)( 

are independent. 

Furthermore, even though by definition 

V = minjSB(l), ..., SB(N), SR(1), ..., SR(M)f 

it is also true that 

V = minjS*(l), ..., S*(N), S*(l), ..., S*(M)} 

since the times of the first actual and hypothetical kills necessarily 

coincide. 
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Thus 

p(x,y){v > tj - p^
x'y){S*(l) > t, ..., S*(N) > t , 

S*(l) > t, ..., S*(M) > t( 

= P(x'y)|s*(l) > t( ... P(X'y){S*(N) > tf 

x P(x>y)|s*(l) > tf ... P(X'y)|s*(M) > tf 

= exp [ - t   s   E c.(j,i)x.] 
j:y-j>0 i 

x exp C - t   E  E c (i,j)y ] 
i:x±>0 j       J 

which completes the proof of (18). 

We note that if j ^ &,   i ^ k 

p(x,y) |s*(j) _ S*U)) s*(j) < 00> s*u) < „j = 0 

and 

P(x,y) |s*(i) = s*(k)j s*(i) < », s*(i) < »I = o 

and that 

P(x,y) |s*(j) = s*(i)j s*(j) < 00} s*(i) < .[= o 

for all i,j, by independence and exponential distributions of the 

random variables involved.. 

Since 

p(X'y)i(§V+' ?V+
) = (X;yl'  •' yj"lj ••" yN^ 

= P(X'y){S*(j) < S*(£), I ?  j; S*(j) < S*(i) for all i} 
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it follows that 

P '  j(~V+> P>V+^ eKw>z):  wi = xi_1 for exactly one i and 

otherwise w = x and z = y or z. = y.-l for 

exactly one j and otherwise, z = y and w = x} 

Again by independence and exponential distributions 

p(x,y) |s*(j) < s*U)j £ ^ j; sg(j) < s*(i) fQr all  .j 

if y. = 0 
J 

E c1(j,i)xi 
i    if y. > 0 

= 1. 

S   E c.(j,i)x. +   E  E c1(i,j)x.      3 

jry^O i       A  irx^O j 

and similarly, 

PCx'y)i(§v+> hJ = (xi' ••" V1' •••' V y)f 

= P(x'y) |s*(i) < S*(k), k *L; S*(i) < S*(j) for all j} 

if x. = 0 
l 

E c2(i,j)y. 

if x. > 0 . 
E  E c (j,i)x. +   E  E c (i,j)y. 

j:yj>0 i       
x      irx^O j       J 

Hence we have shown that 

p(x'y) K?v+» 5v+> = sf = p<<x>y>; ?) 

for all § e E, where P is the transition kernel defined in the 

statement of the Theorem. 
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S3a  Heterogeneous Square Law Process 

We continue to assume that there are M Blue weapon types and 

N Red weapon types, and that the canonical stochastic process 

CO, E, Et, (Bt, Rt)) 

is as described in the preceding section. P^ '*'  will now denote the 

probability law of the attrition process governed by the family of 

five assumptions for the Process S3a, subject to the initial conditions 

50 = y« f ■ 

(19)  THEOREM. Under the assumptions of Process S3a, the collection 

(n, E, Et, (Bt, Rt), P
(x>y>) 

is a regular step process with 

a) state space (E, E) as defined in the description of Process S2; 

b) jump function \    given by 

M  N 

j 
E _E [x p (i,j)r9(j)y. + y.p,(j,i)r1(i)x.] if x ^ 0, y ?  0 
i=l j=l 

X(x,y) = 

if x = 0 or y = 0 

where 
M 

x. = x./ E x, ,   i = 1, ..., M 
1   1 k=l K 

and N 

yn. = yJX  yt  ,  j = l, ..., N ; 
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these quantities are defined only if the denominator is positive; 

c) transition kernel P given for states (x,y) e E such that 

x ^ 0 and y jt  0 by 

P((x,y); (x;y1} ..., y_. - 1, ..., yN)) 

M 
E P1(j,i)r1(i)xi 

~ i=l     . _ . 
Vj      X(x,y)      '    " X' '••' N 

P((x,y): (x15 ..., xi-l, ..., xM;y)) 

N 
E P2(i, j)r2(j )y^ 

= *i J=1  X(x,y)  >  i = l, ..., M; 

d) infinitesimal generator Q given for states (x,y) with x ^ 0 

and y / 0 by 

Q((x,y), (x;y19 ..., y^-1, ..., yN)) = y^ Z   p1(j,i)r1(i)xi 

M  N 
Q((x,y), (x,y)) = - S  S [x.p2(i,j)r2(j)y. + y •P1(j,i)r1(i)x;L] 

i=l j=l J 

N 
Q((x,y);(x1, ..., xi-l, ..., x^y)) = x±    S P2(i} j )r2(j )yj  . 

If x = 0 or y = 0, Q((x,y), a) = 0 for all a e E. 

PROOF. As usual consider the hypothetical situation in which no 

weapons are actually killed, but only "potential" kills are recorded, 

in terms of the times at which they occur. Following the notation of 

the preceding proof we let S*(j) denote the time of the first hypo- 

thetical kill of a Red type j weapon, j = 1, ..., N and for i = 1, 

.... M we denote by S$(i) the time at which the first hypothetical 

kill occurs of a Blue type i weapon. Then the time 
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V* = min|S*(l), ..., S*(N), S*(l), .,., S*(M)f 

of the first hypothetical kill coincides with the time 

V = inf{t: (Bt, Rt) ^ (BQ, RQ)} 

of the first actual kill, which is also the time at which the attrition 

process first changes state. 

For i = 1, ..., M and j = 1, ..., N let K|(i,j) be the time of the 

first hypothetical shot which is fatal to a Blue type i weapon and was 

fired by a Red type j weapon. Similarly, let K*(j,i) be the first 

time at which a Red type j weapon is hypothetically killed by a Blue 

type i weapon. Then 

S*(i) = min{K*(i,l), ..., K*(i,N)f 

and 

S*(j) = min{K*(j,l), ..., K*(j,M)| 

for all appropriate i and j . 

Consider now a fixed Blue weapon of type i. The times of hypo- 

thetical shots which it fires form a Poisson process with rate r,(i). 

Further, by assumption 3 

pQX>y;|a hypothetical shot fired by a Blue type i weapon 

is directed at some Red weapon of type j} 

(20) _       N 

= yH = yJ   z   y.  ; 
3 3     l=1    I 

this is also the probability that an actual shot fired at a Red force 

of composition y is directed at a target of type j. A similar ex- 

pression holds for shots and hypothetical shots fired by Red weapons. 

Hence hypothetical shots fired by a particular Blue type i which are 

directed at Red weapons of type j form a Poisson process with rate r,(i)y. 
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with respect, of course, to the probability P^ '  , which is assumed 

fixed for the purposes of this discussion. The fatal shots fired by 

this weapon at Red type j weapons thus constitute a Poisson process 

with rate r (i)y.p (j,i). By assumption 6, therefore, hypothetically 

fatal shots fired at Red type j weapons by all type i Blue weapons 

form a Poisson process with rate x^r (i)y.p (j,i). 

Another application of assumption 6 shows that the times of all 

hypothetically fatal shots fired at Red type j weapons form a Poisson 

process with rate 

E x±r (i)y.p (j,i) 
i        J 

and therefore 

(21) P(X'y){s*(j) > t| = exp[ - ty\ E P^j,!)^!^] . 

Similarly, since 

P(X,y)|K*(i,j) > t( = exp[ - txip2(i,j)r2(j)yj] 

for each i and j yet another application of the independence 

assumption 6 yields 

(22) P(x'y)|s*(i) > t( = exp[ - tx E P2(i, j )r2( j )y, ] . 
j 

From these two expressions 

P(x,y)jv* > t\  = exp[ - \(x,y)t] 
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(23) 

follows and hence 

P(x,y)|v > t| = exp[ _ x(x>y)t] # 

Proceeding exactly as in the proof of Theorem (17) we see that 

P(X'y){CBv+, 8y+) = (x;yi, ..., y.,-1, ..., yN)f 

= p(x'y){v* = S*(j)f 

= P(X'y)|s*(j) < S*U)  for i jt j,  S*(j) < S*(i) for all i 

y\j  T. p1(j,i)r1(i)xi 

and, analogously, that 

P(X'y)|(Bv+, Rv+) = (xx, ..., x.-l, ..., x^y)} 

= p<x,y)jv* = s*(i)} 

= P(x'y)jS*(i) < S*(k) for k ^ i, S*(i) < S*(j) for all j} 

(24) 

xi S P2(i>j)r2(j)y. 
j         : 

X(x,y) D 
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S3  Heterogeneous Square Law Process 

The notation is exactly that of the previous two processes. 

P*- >y)  now denotes the probability law of the attrition process 

governed by the family of assumptions of Process S3, subject to the 

initial conditions (BQ, RQ) = (x,y). 

(25)  THEOREM. Under the assumptions for Process S3, the collection 

cn» I» It»  (Bt, Rt), p
(x»y)) 

is a regular step process with 

a) state space (E, E) as defined above; 

b) jump function X given by 

M  N 
X(x,y) = E  S [YiCy.D^PiCJ.Dr.CDx. + n.(x,i)p2(i,j)r«(j)y.] 

i=l j=l        x     x   i   :     z     '        3 

(we assume that y. = 0 implies ¥i(y,j) = 0 for all i); 

c) transition kernel P given for states (x,y) with x / 0 and 

y ±  0 by 

M 
S Yi(y,j)p1(j,i)r1(i)xi 

P((x,y);(x;y1, ..., y^-1, ..., yN)) = -=1 \(x,y)  

S T]j(x,i)p2(i,j)r2(j)y:. 

P((x,y);(x1, ..., x±-l, ..., ^y)) =2 X(x,y)  ; 

d) infinitesimal generator Q given for states (x,y) with x ^ 0 

and y / 0 by 

M 
Q((x,y);(x;y1, ..., y.-l, ..., yN)) = E Yi(y,j)P1(j,i)r1(i)x1 
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M  N 
Q((x,y);(x,y)) = - E  E [Y,(y,j)p,(j,i)r1(i)x. + 

i=l j=l       x    x   1 

+ tij(x,i)p2(i,j)r2(j)yj] 

N 
Q((x,y);(x1, ..., x.-l, ..., x^y)) = E Ti;j(x,i)p2(i,j)r2(j)y 

If x = 0 or y = 0, Q((x,y),a) = 0 for all a e E. 

PROOF. The proof of Theorem (19) requires only notational changes. 

By the new assumption 3, (20) becomes 

(20*)  p(x»y) | A hypothetical shot fired by a Blue type i weapon 

is directed at some Red weapon of type j } 

= Y±(y,j) 

so that hypothetical shots fired by a given Blue type i weapon at 

Red type j weapons form a Poisson process with rate r (i)y.(y,j) 

and hypothetical fatal shots fired by this type i weapon at 

Red type j weapons form a Poisson process with rate 

r, (i)Y-,(y, j )P-i(J,i)> in which case for (21) one obtains 

(21*)  P(X'y) |s*(j) > t| B' 

exp[ - t E Yi(y,j)P1(j,i)r1(i)xi] ; 
l 

analogously, (22) becomes 

(22*)  p<x>y> |S*(i) > t} 

= exp [- t E Ti.(x,i)p2(i,j)r2(j)y.] . 
j J 
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In the same manner one obtains as analogs of (23) and (24) the 

following: 

(23*) P(x'y){s*(j) < S*U) for l *  j, s*(j) < S* (i) for all i| 

S Yi(y,j)p1(j,i)r1(i)xi 

=     xTxTy5 

for j = 1, ..., N and 

(24*) P(x>y>|s*(i) < S*(k) for k *  i, S*(i) < S*(j) for all jf 

E Ti.(x,i)p2(i,j)r2(j)y. 
j J 1 

respectively. 

The Theorem now follows. II 

EXAMPLES. The fire allocation scheme of this process is quite 

general, but also entirely abstract. Here are three specific cases, 

1.  Uniform Fire Allocation occurs when 

N 
Y4(y»j) = y.; = yj s y 

and 

cp.(x,i) = x. = x./ E x,^ 
3       a   x k=l K 

1 £=1  £ 

M 

for all i and j and in this case the Process S3 reduces to the 

process S3a. It becomes clear, therefore, that Process S3a is a 

Lanchester square process. 

2. Priority Fire Allocation can occur in the following manner. 

Consider a fixed type of Blue weapon, say type i, and suppose that 
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the Red weapon type 1, ..., N are ranked in some order j  ..., j 

(here {j , ..., j f is simply a permutation of the set jl, ..., N|) 

in such a manner that a Red weapon of type j will never be fired 

upon when a weapon of type j   is present. One models this by 
Jw — -L 

putting 

YiCyJjj*) = i 

where 

I*  = infjjJ: y. > 0} . 

Other more flexible and possibly more realistic priority schemes can 

certainly be developed. 

3. One may also derive fire allocations from physically meaningful 

axioms. For example, consider the following hypotheses on the family 

JY.}of fire allocation distributions 

i) Y-(yjj) = 0 if and only if y. = 0; 

ii) For all y and z 

N   y 
vAy + z,J) = Y,(y,j) E E v i z   Yi(y + z)U)] 

N   z 
+ ¥.(z,j) [ E    I        Y,(y + z)(£)] 

for all j = 1, ..., N. 

The interpretations of all these assumptions are physicallly 

meaningful. The first states that a weapon type not present 

receives no fire but that every weapon type present receives 
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a positive fraction of the fire. The second hypothesis is best 

explained step-by-step. Consider the effect of combining two 

target forces y and z into the single force w = y + z. 

Y.(y + z, £) is the proportion of fire directed at the combined 

force w which is allocated to type I    weapons. If this is 

further allocated among the type I    weapons from the two com- 

ponent forces (y and z) in proportion to the relative numbers 

of such weapons present then 

*r*V<y + z> ° 
is the fraction of fire directed at the combined force that is allo- 

cated to type i    weapons originally part of the y-force. Thus 

N    y 
ay = E y + z Y <y + z> *> y  £=1 yi        I 

is the proportion of fire allocated to weapons of types originally 

and the y-force and 

*z= ,". yTTT:"  (y + z> l) 

the fire allocated to weapons originally in the z-force. But the 

fire represented by a should be allocated among weapon types 

according to the distribution ¥ (y, •) and similarly for a so that z 
one should have 

Y (y + z, •) = ayY (y, •) + a/ (z, •) 

which is exactly the second assumption. If an assumption like this 

did not hold, consistency problems would arise, with fire allocation 

dependent on names given targets rather than only numbers of targets. 
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(For example, arbitrarily splitting a class of n indistinguishable 

weapons into two subclasses of n "Type A" and n - n, "Type B" 

weapons would change the fire allocation). 

We have conjectured, and J. Blankenship (1973) has proved, using 

the notion of invariant measures for Markov matrices, that any family 

| Y | of allocation distributions satisfying i), ii), iii) above is 

necessarily of the form 

a.y. 
f(y,j) = N 

J 3 

£=1     l   l 

where 

3j = *(l,j)  ,   j = 1, ..., N 

and 1 = (1, ..., 1). It is possible, moreover, to express the Y 

and terms of Y (y, *) for any fixed y such that y. > 0 for all j. 

Thus if one accepts the hypotheses i), ii), iii) then the fire alloca- 

tion for every target force can be computed from that for a "base" 

force. 

We remark in conclusion that even if different weapons may employ 

qualitatively different means of allocations, the model remains valid. 
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LI   Homogeneous Linear Law Process 

We return to the sample space and canonical stochastic process 

previously established for the homogeneous case. Thus, the state 

space is 

E = N x N 

together with the discrete a-algebra £, Q is the set of mappings 

ID = (CD, , u)2) from [0, co) into E which are right-continuous with 

left-hand limits everywhere, 

Bt(u») = u^Ct) e E 

Rt(üü) = uu2(t) e E 

for each t > 0, 

it = a((Bu' V : ° < u< t) 

is the history of the attrition process up until time t and 

F = a((Bu, Ru) : u > 0) 

the entire history. 

From each (i,j) e E we denote.by P11»3', as usual, the probability of 

the attrition process conditioned on the event |(BQ, RQ) = (i,j)f 

and this time governed by the five assumptions listed in the main 

text for the Process LI.. 

(26)  THEOREM. Under the assumptions of Process LI, the collection 

(0, E, Et, (Bt, Rt), P
(i'j)) 
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is a regular step process with 
2 

a) state space E = N ; 

b) jump function \  given by 

X(i,j) = iJC^ + k2); 

c) transition kernel P given for states (i,j) with i > 0 and 

j > 0 by 

kl 
P((i,j), (i,j - D)= k +\ 

k ' 
P((i,j), (i - l,j)) = k /k ; 

d) infinitesimal generator Q given by 

Q((i,j), (i,j - D) = kxij 

Q((i,j), (i,j)) = - (k-L + k2)ij 

Q((i,j), (i - 1, j)) = k2ij . 

We remind that for £ = 1, 2 

k„ = s„q. 

where 1/s, is the mean time required for a particular Blue weapon to 

detect a particular Red weapon and q, the conditional probability that 

a Blue weapon destroys a Red weapon (in a one-on-one engagement, the 

only sort of engagement permitted in this model, which is also assumed 

to occur instantaneously) given detection and attack,  s» and q are 

analogous descriptions of Red weapons. 

PROOF. We again use the device of hypothetical kills, which is 

useful because it preserves independence and stationarity properties 

which are not valid for the actual attrition process, yet allows us 

to make statements about the actual process because the time of the 

first hypothetical kill is also the time of the first actual kill 
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(namely, the first time at which the attrition process changes state) 

and the weapon killed at the first hypothetical kill is also the first 

weapon actually killed. Thereafter the two processes diverge from 

one other and the hypothetical process is no longer a useful means 

of dealing with the actual process. 

We therefore denote by T*(k,jO the time at which the k  Blue 

weapon (first) hypothetically detects and kills the J  Red weapon 

(not every detection results in a kill unless q, = 1) and let . 
■t~Vi 

T£(jfc,k) be the time at which the i      Red weapon first hypothetically 
th kills the k  Blue weapon.' Then according to assumptions 2, 3, 4, 5 

and the Random Sampling Theorem for Poisson processes, the random 

variables T*(l,l), T*(l,2), ..., T*(l,j), T*(2,l), T*(2,2), ..., 

T*(2,j), ..., T*(i,l), T*(i,2), ..., T*(i,j) are independent and 

identically exponentially distributed with mean 1A-.» Symmetrically, 

T*(l,l), ..., T*(l,i), ..., T*(j,l), ..., T*(j,i) are independent 

and identically exponentially distributed with mean l/k2. Further- 

more, these two families of random variables are independent. All 

of these statements hold with respect to the probability P^1'  . 

Also with respect to P^ »■' , the time 

V* = min min{T*(k,jQ, T*U,k)f 
k<i     B      R 

of the first hypothetical fatality and the time 

V = inf{t:.(Bt, Rt) ^ (BQ, RQ)f 

of the first actual fatality, coincide almost surely. 
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By independence, therefore, 

pCi.lDjv* > t| = P(l'j)|T*(k,£) > t, T*U,k) > t 

for 1 < k < i, i < £ < jf 

- pCijJ)^* (k>je) > t for 1 < k < i, l'< i < jf 

x P^'^JTgUjk) > t for 1 < k < i, 1 < i < j\ 

=  (P(i'j)|T* (1,1) > t} )ij x (P(i'j){T*(l,l) > t[)ij 

= exp [ - t(kx + k2)ij] . 

Since the side which suffers the first hypothetical casualty also 

suffers the first actual casuality (at, as noted above, the time of 

the first hypothetical casualty) and since by independence and non- 

atomicity of the exponential distribution 

P^'^jthe T*(k,jfc) and T*(£,k) are all distinct from one 
(97 "i B R 
K*>J another} = 1, 

it follows that 

(28) P(i'j)|(Bv+3 R^) e |(i,j - 1), (i - l,j)}( = 1 

and, moreover, that 

p(i'J){<Bv+> 
Rv+) = (i'j " 1}* 

= P^'^jTjCk,!) = V* for some k and l\ 

= E  E PU,j;|T*(k,i) = V*} 
k=l £=1        B 

(we have used (27) here) 
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= ij P(i'j)JT*(l,l) = V*} 

by identical distributions of the T*(k,j£). 
B 

Finally, we compute that 

p(iJ)|T*(ljl) _ v*| 

= P(l'j)|T*(l,l) < T*U,k) for k < i, i <  j ; 

Tg(l,l) < T*(k,£) for 2 < k < i, 2 < t <  j; 

T*(l,l) < T*(1,A) for 2 < SL <  j; 

T*(l,l) < T*(k,l) for .2 < k < i| 

 kl  
" [ijk2 + (i - l)(j - l)kx + (j - l)kx + (i - l)kxJ + kx 

 h  
- ijk2 + kxL(i - l)(j - 1) + (5 - 1) + (i - l) + ij 

ki 
±3i\  + k2) * 

Thus 

r(1,j>)CBv+. v>" (i>j " x» = ij hjt^l k2)> 

ki    ■ 
k + k2 

and by (28) the complementary event |(By , Ry+) = (i - l,j)| has 

pC1»^^-probability given as follows: 

105 



p(l'J)J V» Rv+) = (i " ^ 

=  1  -   P(i'J)|(Bv+,   Rv+)  =  (i,j   -   1)| 

=  1 kx + k2 

k1 + k2  * D 
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L2  Homogeneous Linear Law Process With Engagements 

To study this process we must introduce further notation, 

which will be used only here. Let 

E =N x N x jg , 

the state space of this process, be endowed with the discrete 

a-algebra | and the discrete topology. We take as the sample 

space n the set of mappings UJ = (uu., iu2 uu3) of [0, ») into the 

state space E which are right continuous and possess left-hand 

limits everywhere (with respect to the discrete topology on E ). 

For t > 0 define 

B*((ju) = (^(t) 

R*(uu) = U)2(t) 

and 

Dt(iu) = uu3(t) . 

We begin discussion of the process with binary engagements with a 

model of a three-component process in which B* denotes the number 

of unengaged Blue weapons surviving at time t, R* the number of Red 

weapons surviving and unengaged at time t and Dt the number of 

binary engagements (duels) going on at time t. Since only binary 

engagements are permitted, D. is then also the number of surviving 

and engaged Blue weapons at time t, which necessarily is also the 

number of Red weapons surviving at time t but engaged at that 

instant. 

The history of the process up until time t is again given by 

Et = a((Bj, RJ, Du):  0 < u < t) 

and the entire history by 

E = a((Bj, RJ, Du):  u > 0) . 
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Let p*-1'3' ' denote the probability law on (n, F) of the three 

component process ((B*, R*, Dt))t>0 9
0verned by the assumptions of 

Process L2, subject to the initiaT conditions 

B* = i   initially unengaged Blue survivors 

R^ = j   initially unengaged Red survivors 

Dg = k   engagements initially in progress . 

For most applications one would have k = 0. 

(29)  THEOREM.  Under the family of assumptions for Process L2, 

the collection 

(n, E, Et, (B*, R*, Dt), p^'J.k)) 

is a regular step process with 

a) state space E = N ; 

b) jump function \    given by 

X(i,j,k) = ku + ij(s-j^ + s2) ; 

c) transition kernel P given by 

P((i,j,k), (i + 1, j, k - 1))= ku + £fSi   +   S2) 
kp,u 

P((i,j,k), (i, j + 1, k - D)=ku + ij(Si + s2) 

kp3u 
P((i,j,k), (i +.1, j +ly k - 1))= ku + ij(Si + s2) 

ij(s + s2) 
p((i,j,k), (i - i, j - i, k + D) - ku + ij(Si + s2) ; 
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d) infinitesimal generator Q given by 

Q((i,j,k), (i + I,  j, k - 1)) = kp2u 

Q((i,j,k), ( :, j + 1, k - 1)) = kP;Lu 

Q((i,j,k), (i + 1, j + 1, k - 1))-= kp3u 

Q((i,j,k), (i - 1, j - 1, k + 1)) = ij(Sl + s2) 

Q((i,j,k), (i,j,k)) = - [ku + iJCs^ s2)] . 

PROOF. Denote by T, the time at which a duel is first initiated 

and let T„ be the time at which the first initially ongoing 

duel terminates ( = + » if there is no such duel). Then the 

first time at which the process changes state is given by 

V = minJTp T2 f . 

From the proof of Theorem (26) and assumption 7 we see that with 

respect to the probability p^-1'3'  , T, and T2 are independent 

and exponentially distributed with means l/ij(s, + s2) and 1/ku, 

respectively. Therefore 

p(i,j>10jv > tf = pt
1'^10^ > t, T2 > tj 

= p(i,J,k)|Ti> t|p(i,j,k)|T2 > t| 

= exp [ - ij(s1 + s2)t] exp [ -(ku)t] 

= exp [ - X(i,j,k)t] . 

At time V exactly one of four events occurs: 
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1) One engagement terminates with the destruction of a Red weapon; 

2) One engagement terminates with the destruction of a Blue 

weapon; 

3) One engagement terminates with the destruction of neither 

combatant; 

4) One new engagement is initiated. 

If the current state is (i,j,k) then the new states reached in 

these four cases are 

1) (i + 1, j, k - 1) 

2) (i, j + l, k - 1) 

3) (i + 1, j + 1, k - 1) 

4) (i - 1, j - 1, k + 1) , 

respectively. 

By now familiar computations, 

pCi'J'k)i<Bv+> *v+>  Dv+
} = (i + i. J. * - 1)1 

= pC
1»^? '|T9 < T,, outcome of terminated duel is 

destroyed Red weapon} 

= P(l'J''k^T2 < TJ x 

pCijD'k)joutcome of terminated duel is destroyed 

Red weapon} 

_  ku 
ku + ij(s1 + s2) 

p2 

Similarly, 

pCi,J,k)|(B*+> R*+> DV+) = (i, j + 1, k - 1)} 
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= pQ
1»^» J[T^ < T outcome of terminated duel is destroyed 

Blue weapon} 

= P(i}j'k){T2 < Tx} x 

p^ '-'> ' [outcome is destroyed Blue weapon} 

_     ku  
' ku + ijCSj^ + s2) 

pl ' 

and 

p(i,j,k){(B*+> R*+> Dv+) = (i + i, j + i, k . i)} 

= p^. >3» ) {m < ij  outcome of terminated duel is destruction 

of neither weapon } 

= P(i'j'k){T2 
<  Ti-} X 

P^ '-', '{outcome is mutual survival} 

=     ku  
" ku + ij(s1 + s2) 

p3 * 

Finally, 

p(i>J>10{(B*+j R*+J DV+) = (i - 1, j - l, k + 1)} 

= P(i'j'k)fT1<T2} 

iJCs! + s2) 

" ku + ij(s1 + s2) ' 

Standard arguments now complete the proof. 
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Consider now the two-dimensional process ((B , R.))^n of total 

numbers of survivors defined by 

and 

Bt = B* + Dt 

Rt = R* + Dt 

Unfortunately, ((B , R.)). 0 is not a Markov process with respect to 

the a-algebras (| ) _ because for each t the history F of the 

process up until time t contains information about the process, 

namely the components B*, R* anc* D , which is not contained in the 

pair (Bt, Rt). 

Functions of Markov process have been studied but mostly in terms 

of limiting behavior (e.g., Laws of Large Numbers and Central Limit 

Theorems, cf. Chung (1967)) and identifiability problems (cf. 

Rosenblatt (1971))and hardly at all in terms of transient behavior 

and computation of distributions.  Further research is desirable. 

We can make some simple remarks about computations.  If for each 

t we know 

Pt((i,j,k), U,m,n)) = P
(i'J 'k)| (B*, R*, Dt) = (A,m,n)| 

for all (i, j, k) and (4, m, n), then we can compute 

P(i'j>k)|Bt = n| 

= E    s  Pt((i,j,k), U,m,n))  . 
m n+l = \s 

This computation is not so hard as appears at first glance, since we 

know from the theory of regular step processes that 

Pt((i,j,k), U,m,n)) =[exp (tQ)] ((i,j,k), (£,m,n)), 
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-T 

and hence can be approximated as 

M  p 
P ((i,j,k), U,m,n))~ E K QP((i,j,k), U,m,n)), 
r p=0 p# 

Since by linearity of expectation we have for each (i,j,k) e E 

E(i,j,k) iBj  =  E(i,j,k) [B^ + E(i,j,k) [Dt] 

any scheme (in particular, that discussed in Section IV of the paper) 

for approximating expectations of a regular step process also approxi- 

mates expected numbers of survivors in this process. 

To produce a good probabilistic characterization of the process 

((B. , IO) will take further research into the behavior and charac- 

terization of functions of Markov processes. 
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L3   Heterogeneous Linear Law Process 

Assume that there are M Blue weapon types and N Red weapon 

types. The state space E for the heterogeneous linear law process 

is then given by 

E=NX...XN(M+N times) , 

along with the discrete a-algebra | . As sample space n we have 

the family of functions from [0, ») into E which are right- 

continuous and have left-hand limits everywhere. For u> = (uu,, ..., 

(Dw, uu-T, ..., uUjl)> where UK, ..., cu,, tu-T, ..., uu^ are mappings of 

[0, oo) into U which are right-continuous and have left-hand limits, 

with respect to the discrete topology on N , and t > 0, we define 

Bt(uu) = (cu-j^t), ..., u^Ct)) 

Rt(w) = (u){(t), ..., üUjJ(t)) 

BJ(üö) = uu±(t) ,   i = 1, ..., M , 

RJ(u>> = u»'(t) ,   j = 1, ..., N . 

B^ is the number of type i Blue weapons surviving at time t, B. = 
t **t 

(B', ..., B;.) the Blue force surviving at time t, R^. the number of 

type j Red weapons surviving at time t and R the surviving Red force 

at time t. 

The history of the attrition process up until time t is 

It = a((§s' h):    ° - s - t5 

and the entire history is 

E = cr((B , R ):  s > 0) . 
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Points in E are written in the form (x,y) with x e N and x. 

denoting the Blue type i weapons and y e N with y. the number of 

type j Red weapons. 

For each (x,y) e E let p(x>y) be the probability law on (£},£) 

of the attrition process governed by the family of hypotheses of 

Process L3, subject to the initial conditions 

and 

B0 = x 

*0 = y 

(30) THEOREM. Under the assumptions of Process L2, the process 

CO, E, Et, (Bt, Rt) , p(x'y)) 

is a regular step process with 

a) state space (E, E) as defined above; 

b) jump function X given by 

M  N 
(31) \(x,y) = E  E x y [k^j.i) + k2(i,j)] 

i=l j=l   J 

where k (n,v) = s (n,v)p (^i,v) for q = 1, 2 and appropriate values 
M. Hi Mi 

of p. and v ; 

c) transition kernel P given by 

M 
y,      E k (j,i)x. 

J     i=l 
P((x,y); (x; y1, ..., y^-1, ..., yN)) =  \(x,y)  

(32) N 

P((x,y); (x1? ..., x±-l,   ..., XJJ 

x.  E k9(i,j)y. 
i=l 

• > x*,; y)) = TTT X(x,y) 
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d) infinitesimal generator Q, given by 

M 
Q((x,y), (x; yr   ..., yj - 1, ..., yN)) = yj s k1(j,i)xi 

M  N 
Q((x,y), (x,y)) = - E  S x.y .(k (j, i) + k9(i, j)) 

1=1 j=l a 3    x      * 

N 
Q((x,y), (x1, ..., x±  -l, ..,, x^ y)) = x± E k2(i,j)y. . 

PROOF. We follow the pattern established in the proof of Theorem (26), 

only now the notation is more complicated. 

Denote by T*(i,j; k,£) the time at which the k  Blue weapon of 
1~Vi 

type i-.first hypothetically detects and kills the I      Red weapon of 

type j and by T*(j,i; £,k) the time at which the first hypothetical 
K 

kill of that specific Blue weapon by the same particular Red weapon 
(x v) occurs. With respect to the probability law Pv '  , for each i 

* 
and j the random variables T|(i,j; 1,1), Tß(i,j; 1,2), ..., 

T*(i,j; l,yj), T*(i,j; 2,1), ..., T*(i,j; 2,yj), ..., T*(i,j; x±,l), 

..., T*(i,j; x.,y.) are independent and identically exponentially 

distributed with mean l/k..(j,i). Similarly, T*(j,i; 1,1), ..., T£ 

(j,i; l,xi), ..., T*(j,i; y^l), ..., T*(j,i; yj} x±) are independent 

and identically exponentially distributed with mean l/k2(i,j). These 

two families of random variables are independent with respect to P^ 'y' 

and as the weapon types i and j vary all families of random variables 

so obtained are independent. 

With respect to p^x>y' the time 

V* =   min    minmin{T*(i,j; k,jfc); T*(j,i; £,k)} 
i=l,..,,M 
j=l,...,N 

B i=l,..,,M  k<x. 
— l 

i<y. 
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of the first hypothetical fatality and the time 

V = inf{t:  (Bt, Rt) *  (B0, R0)} 

at which the first actual fatality occurs are equal almost surely. 

By the independence hypothesis 5, we have 

p(x,y){y* > t} 

= P(x'y){T*(i,j; k,A) > t, T*(j,i; £,k) > t for all 

appropriate i, j, k, 1} 

n    P(x'y){T*(i,j; k,jO > t for all k < xi, I <  y.} 
i=l j=l 

N  M 
>(x,y). x n  n P^x'y;{T*(j,i; £,k) > t for k <: x., i <  y.} 

3=1  1=1 

M  N   Xi  yj  f   , 
= n n n n p^x,y;{T*(i,j; k,£) > t} 

i=l j=l k=l 1=1 

N  M  yJ X±    fv v\ x n n n n P
Q
 

,y)  CT*(J,±; £,k) > t] 
j=l i=l 1=1  k=l       * 

M  M  Xi yj 
= n n n n exp [ - k1(j,i)t] 

i=l j=l k=l 1=1 

N  M  yj Xi 
x n n n n exp [ - k2(±,j)t] 
j=l i=l £=1 k=l 

M  N 
= n  II exp [ - x.y.k (j,i)t] 

i=l j=l J 

N  M 
x n  n exp [ - y.x.k9(i,j)t] 

=1 i=l        J 
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M  N 
= exp [ - t i z   x.y.(k (j,i) + k9(i,j))] 

i=l j=l 1 3    L * 

= exp [ - \(x,y)t] , 

where X is defined by (31), so that 

P(X'y){V > t} = exp [ - X(x,y)t] 

as required. 

Since almost surely with respect to p'x>y^ the Tj(i,j; k,£) and 

Tp(j,i; £,k) are all distinct from one another, it follows first of 

all that 

I 

P(x'y){(Bv+, Rv+) e {(x; yi-l, y2, ..., yN), ..., 

(x; yv   ..., yN-D, (xx - 1, ..., yM; y), 

..., (xx, ..., Xj^-1; y))} = 1 . 

For a fixed j we have 

P(x'y){(Bv+, Rv+) = (x; yv   ..., y..-l, ..., yN)3 

_ p(x>y){V* _ T*(i,j; k,£) for some i, k < x.; and i < y.} 
D —  1 —  J 

«  x.  y. 
M   1  3     (x  vV = Z      S  2 p^x>y^v* = T*(i,j; k,£)} 
i=l k=l £=1     '  .   B 

= y. E x. P(x'y)<{V* = T*(i,j; 1,1)3 • 
D  1=1 1      I D 

But 

p(x,y)[v* = T*(i,j; 1,1)} 
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= P(x'y){T*(l,j; 1,1) < T*(j,i; i,k) for all k, ly 

T*(i,j; 1,1) < T*(n,m; £,k) for m £  i, n £j, all k, i; 

T*(i,j; 1,1) < T*(m,n; k,£) for m / i, n ?  j, all k,A; 

T*(i,j; 1,1) < T*<i,j; p,q) for p > 1 or q > 1} 

k^j,!) 

x.y.k2(i,j) + S  S x y [k_(m,n) + k (n,m)] + x.y.k (j,i) 
J        m#i n^j J 

= P((x,y); (x; y^ ..., y.-l, ..., yN)) 

where P(•,•) is defined by (32). The proof that 

P(X'y){(Bv+, Rv+) = (Xr ..., x.-l, ..., x^ y)) 

= P((x,y), (x1? ..., x±-l, ..., x^ y) 

for each i is entirely analogous and is hence omitted. 

The proof is complete upon application of standard arguments 

based on the "memoryless" property of the exponential distribution 

which extend the preceding computations to show that if one defines 

for each t the time 

Vt =Unf{s > t:  (Bs, Rs) ?  (Bt, P>t)3 

of the first transition of the process after time t then 

p(x>y)|{Vt - t > u | Et] = exp [ - X(Bt, Rt)u] 

and 

P(X'y)UBv +, By +) =a] = P((Bt, Rt); a) 
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for all (x,y) and a e E. From these two statements one concludes 

that (n, F_, £ , (B , P> ), P^ 'y') is indeed a regular step process 

with jump function X. and transition kernel P. 
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Ml   Hetergeneous Mixed Law Process 

For simplicity and clarity we assume that each side possesses 

exactly two types of weapons, one of which obeys assumptions of 

weapons in square law models and the other of which behaves accord- 

ing to the assumptions of the linear law models. Our convention is 

that Type 1 weapons satisfy square law assumptions and Type 2 weapons 

linear law assumptions. 

4 
The state space becomes E = N with, as usual, the discrete 

a-algebra E . As sample space Q    we have the family of 

right-continuous functions from [0, ») into E which everywhere 

have left-hand limits. For UJ = (UJ,, tu«, u),, iO e Q we define 

Bt(uu) = uu-j^t) 

B£(U>) = uu2(t) 

R^(uj) = u)3(t) 

R£(UO = u)4(t) . 

For q = 1, 2, B^ (resp., R^) is the number of type q Blue (resp., 

Red) weapons surviving at time t. We further define 

5t = (Bt' Bb 
and 

Rt = (Rj, R2) 

which are the surviving Blue and Red forces, respectively, at 

time t. 

As usual the history of the process until time t is 

Et = a((Bs, Rs):  0 < s < t) 
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and the entire history is 

E = a((Bs, Rs):  s > 0) . 

Denote by pv >J' ' J the probability law on the measurable 

space (0,E) of the attrition process governed by the family of 

eight assumptions of the Process Ml, conditioned on the event 

tB0 = i' B0 = j' R0 = k' R0 = Z]  ■ 

(33)  THEOREM. Under the assumptions of Process Ml, 

(fl, E, Et, (Bt, Bt), P(i>j'k>£)) 

is a regular step process with 

a) state space (E, |), as defined above; 

b) jump function \    given for nonabsorbing states [that is, 

states (m,n,p,q) such that m + n > 0 and p + q > 0] by 

/kp (1) + Ap (2)\ 
Ui,j,k,*)= ir ^    k + z ) 

+ JCks^Dq^l) + £s1(2)q1(2)) 

/ip2(l) + jp2(2) \ 
+ kM TTT / 

+ £(is2(l)q2(l) + js2(2)q2(2)) ; 

c) transition kernel P given by 

ir p (1) k + jk • s (l)q (1) 
P((i,j,M); (i,j, k-l,l)> = -^-±  X(i,j,k,l) L— 

ir p (2) -4- + j£-s (2)q (2) 
P(U,J,M); (i.35 k,£-l)) » L L 

\(i,j,k,je) 
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kr2p2(l) A-+ ii • s (l)q2(l) 
P((i,J,M); (i-l,j,k5£)) =-^-^  X^i,j,k,A)  '  

jlr9p2(2) -Xr + Aj • s9(2)q?(2) 
P((i,j,k,i); (i,j-l,k,i)) =—£-f ^i,j,k,A)  "  ; 

d) infinitesimal generator Q given for nonabsorbing states 

(i,j,k,jO by 

:Q((i,j>k,i); (i,j,k-l,i)) = ir1 Pl(l) ^ + jk . s^i'Jq^i) 

.Q((i,j,k,i); (i,j,k,A-l)) = ir^ Pl(2) ^ + ji * s1(2)q1(2) 

Q( 
('  /kp (1) + £p,(2)\ 

(i,j,k,A); (i,j,k,i)) =-pxV   k + t    ) 

+ JCks^Dq^l) + £s1(2)q1(2)) 

/ip2(l) + jp2(2)\ 
+ kr2 {—m—) 

+  jl(is2(l)q2(l) + js2(2)q2(2)) 

Q((i,j,k,i); (i-l,j,k,A)) = kr2P2(l) -^ + Ai '  s2(l)q2(l) 

Q((i,j,k,A); (i,j-l,k,A)) = kr2P2(2) JL + lj   • s2(2)q2(2) . 

If state (i,j,k,£) is absorbing thenQ((i,j,k,£), a) = 0 for all 

a e E. 

PROOF. For one last time we resort to the fiction of hypothetical 

kills. 

Denote by T*(m,n) the time at which some Red type n weapon is 
B 

first hypothetically killed by some Blue type m weapon and by 
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T*(n,m) the time at which some Blue type m weapon is first 

hypothetically killed by some type n Red weapon, for m, n = 1, 2. 

Hypothetical shots fired by a type 1 Blue weapon form a Poisson 

process with rate r , so such shots directed at type 1 and type 2 

Red weapons form independent Poisson processes with rates 

k        l r, -r—  and r r—• , respectively, relative, of course, to the 

fi "i k £.} probability measure P^ >J'   ' '. Hypothetical fatal shots fired by 

this particular Blue type 1 weapon against type 1 and type 2 Red 

weapons thus form independent Poisson processes with respective 

k l rates r,p..(l) -r—r and r p,(2) »-=y and hence by assumption 8 and 

the Superposition Theorem for Poisson processes it follows that 

PCi'j'k'£){T|(l,l) > t) = exp[ - t(irlPl(l) J^)] 

(34) 

PC1'J'k'£){T*(l,2) > t} = exp [ - t(ir1P1(2) ^ )]. 

Entirely analogously we have 

p(i,J,k,£){T*(ljl) > t} = exp L_ t(kr2p2(1) ^3 

(35) 

PCi'j,k'£){T*(l,2) > t] = exp [ - t(kr2p2(2) ^Ij)] . 

Hypothetical detections of a particular type n Red weapon 

by a particular type 2 Blue weapon form a Poisson process with 

rate s,(n), and hypothetical fatal shots by the same Blue weapon 

at the same Red weapon a Poisson process with rate s1(n)q1(n) from 

which one obtains by the independence assumption 8 that 

PCi'j'k'-°{T*(;2,l) > t) = exp[ - t(jks1(l)q1(l)] 

(36) 

p(i,j,k,i)fT*(2j2) > t} = exp[ _ t(jis1(2)q1(2)]  . 
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Similarly 

P(i,J'k"°|T*(2,l) > t( = exp[ - t(Ji s2(l)q2(l))] 

(37) 

P(i'J'k'£)JT*(2,2) > t| = exp[ - t(ij s2(2)q2(2))]. 

But the independence assumption 8 implies that with respect to 

F\   ,JI ,*y the random variables T*(m,n), m, n = 1, 2 and T*(n,m), 
o R 

n, m = 1, 2 are mutually independent. The minimum V* of these eight 

random variables is, moreover, equal with probability one to the 

time 

V = infjt:  (Bt, Rt) # (BQ, RQ)} . 

Therefore,  by (34),   (35),   (36),   and (37) 

2       2.. 
p(i,J,k,X)|v > tj _    n      n    p(iJ»k^)|T*(m)n) > tfp^^'^T^n,*) > t[ 

m=l n=l 

= exp  [- t(ir1p1(l)^1+ir2p1(2)-^ 

+ kr2P2(1^+kr2V2)iij 
+  jk  •   s1(l)q1(l) +  jjfc   •   Sl(2)qi(2) 

+  t±   •   s2(l)q2(l) + jfcj   •   s2(2)q2(2))] 

= exp   [ - tX(i,j,k,je)] 

by a simple rearrangement of terms. 

With probability one the eight aforementioned random variables are 

all distinct from one another. We then have, for example, 
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F(i'J'k"°j(Bv+,   Rv+)  =  (i,j,k-l,i)| 

= p(l>J>k>£>|v* = T*(l,l)  or V* = T*(2,l)| 

= P(i'j'k'£)jV* = T*(l,l)}+ P(l'j'k"e' jV* = T*(2,l)| 

= P(l'j'k'°|T*(l,l) < min{T*(l,2), T*(2,l) , 

T*(2,2), T*(l,l) , 

T*(l,2), T*(2,l) , 

T*(2,2)| | 

+ P(l'J'k"e){T*(2,l)  < min{T*(l,l),   T*(l,2) , 

T*(2,2),   T*(l,l) , 

T*(l,2),   T*(2,l) , 

T*(2,2)f [ 

XriPl(1)  k~Z       j.k   •   si(l)q1(l) 
- ____________ + ____________     • 

X(i,j,k,_) X.(i,j,k,_) 

here we have omitted some long and unenlightening expressions occurring 

in the course of the computation. 

One similarly checks that 

P(i,J,M)j(Bv+, Rv+) = (i,j,k,£-l)| 

iripi(2) ik + H * 8i<2>(ii<25 
____________________________ } 

X(i,j,k,£) 
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that 

P(i,J,M){CBv+, Rv+) = (i-1, j, k, l)\ 

kr2p2(l) ^ + ±i   . s2(l)q2(l) 

X(i,j,k,i) 

and, finally, that 

P(i'J,k"°|(Bv+, Rv+) = (i,j-l,k,i)} 

kr2p2(2) -4^ + j£ . s2(2)g2(2) 

X(i,j,k,i) 

Hence in all cases we have 

p(i,j,k,£)|(?^ ^ =a^= p((i>j>k5i); a) 

and the proof of the Theorem is complete following standard exten- 

sions based on the "memoryless" property of the exponential 

distribution. 
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Mia  Homogeneous Mixed Law Process 

We assume that the Blue side has only type 1 weapons and the 

Red side only type 2 weapons. 

Consider the 4-dimensional Heterogeneous Mixed Law Process Ml 

derived above.  With respect to a probability of the form p^1»°>0'^^ 
2     1 

Bt and R^ are identically zero almost surely and can be disregarded. 

Now 

X(i,0,0,£) = 11^(2) + ij . s2(l)q2(l) 

while 

ir,p,(2) 
p((i,o,o,i),(i,o,o,A-D) = x(lXo,z) 

and 

±1  • s2(l)q2(l) 
p((i,o,o,i), (1-1,0,0,0)= X(i>0,6,jO— * 

Hence we have the following result. 

(38) THEOREM.' Let the assumptions of Process Ml be satisfied. 

Then the stochastic process 

(0, E, Et, (BJ. 4),  P^.0'
0
.«) 

is equivalent—in the sense of being a Markov process with the same 

infinitesimal generator (and thus a regular step process with the 

same jump function and transition kernel)—to any regular step 

process with state space N x N, jump function \    given by 

\(i,£) = ii^p^) + ii • s2(l)q2(l) 
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and transition kernel P given by 

P(( 1,1);   (i,£-l)) 
ir1P1(2) 

Ui,l) 

P(( 1,1);   (i-l,je)) 
±i   . s2(l)q2(l) 

X(i,A) 

From Theorem (38) one trivially < obtains our final Theorem. 

(39) THEOREM. The attrition proces. 3 governed by the family of 

assumptions of Process Mia is a regular step process with 

a) state space N * ■ N; 

b) jump function \    given by 

(irp + ijsq if i > 0, o > 0 

\(i,j) = J 
[0 if i = 0 or j = 0 ; 

c) transition kernel P given for states (i,j) with i > 0 and 

j > 0 by 

P((i, j), (i,j-D) = 
rp 

rp + jsq 

P((i, j), (i,j-l)) = 
jsq 

rp + jsq ' 

d) infinitesimal generator Q given for states (i,j) with i > 0 

and j > 0 by 

Q((i, j), (i,j-l)) = irp 

Q((i,j), (i,j))  = - (irp + ijsq) 

Q((i,j), (i-l,j)) = ijsq . 

If i = 0 or j = 0, Q((i,j); (k,£)) = 0 for all (k,£) e E.       j] 

The particularly simple form of the transition kernel P is 

noteworthy. Each column is constant; perhaps this structure can be 

exploited in computational applications. 
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